當前位置:首頁 » 數控儀器 » 儀器干擾怎麼辦

儀器干擾怎麼辦

發布時間: 2021-03-03 21:15:04

1. 示波器受外界干擾怎麼處理

弄清楚干擾的來源、種類。採取相應的措施。

假如干擾來自外部,接地和屏蔽是你首先要做好的事。假如干擾來自市電的50Hz交流電,那麼所有儀器使用同一相並一點接地,必要時使用50Hz陷波電路去除干擾。假如干擾來自探頭、高阻輸入部分的熱雜訊,那麼在可能的情況下減小輸入阻抗(這與為對被測電路影響小而需要提高輸入阻抗相矛盾,你需要看情況權衡取捨),必要時把整個裝置放入低溫環境(如半導體恆溫槽、乾冰,甚至液氮、液氦中)。

示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖像,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。

2. 示波器受外界干擾的處理辦法

弄清楚干擾的來源、種類。採取相應的措施。
假如干擾來自外部,接地和屏蔽是你首先回要做好的答事。假如干擾來自市電的50Hz交流電,那麼所有儀器使用同一相並一點接地,必要時使用50Hz陷波電路去除干擾。假如干擾來自探頭、高阻輸入部分的熱雜訊,那麼在可能的情況下減小輸入阻抗(這與為對被測電路影響小而需要提高輸入阻抗相矛盾,你需要看情況權衡取捨),必要時把整個裝置放入低溫環境(如半導體恆溫槽、乾冰,甚至液氮、液氦中)。

示波器是一種用途十分廣泛的電子測量儀器。它能把肉眼看不見的電信號變換成看得見的圖像,便於人們研究各種電現象的變化過程。示波器利用狹窄的、由高速電子組成的電子束,打在塗有熒光物質的屏面上,就可產生細小的光點(這是傳統的模擬示波器的工作原理)。在被測信號的作用下,電子束就好像一支筆的筆尖,可以在屏面上描繪出被測信號的瞬時值的變化曲線。利用示波器能觀察各種不同信號幅度隨時間變化的波形曲線,還可以用它測試各種不同的電量,如電壓、電流、頻率、相位差、調幅度等等。

3. 公司安裝了信號干擾器,信號被干擾了怎麼辦有什麼辦法可以解

如何避開信號干來擾
方法一:由源於無線網路發展的速度很快,現在已經發展到4G網路,而許多公司使用的是型號比較老的信號屏蔽器,其只能屏蔽小靈通、移動、聯通等2G網路,而對3G乃至現在的4G網路束手無策,破解方法:使用3G或4G卡。
方法二:波段破解法。因為公司的屏蔽器的工作原理是通過干擾指定波段的手機信號屏蔽手機的所以只要修改手機的接受發射頻率就可以防止被屏蔽了,屏蔽器只屏蔽900-1800MHZ的手機信號,而手機的接受發射頻率是850—1900MHZ遠大於屏蔽器的屏蔽范圍,所以只要在手機設置里把手機的接受發射頻率調整至最大就可以正常接受到手機信號了。
方法三:WIFI破解法。這個方法對環境要求比較高,前提是周圍必須有可用的無線網路。一些手機信號屏蔽器不能屏蔽WIFI信號,可以實現與外界通信。
方法四:藍牙破解法。適合在屏蔽區域內短距離的通信,可能某些屏蔽器忽視掉藍牙的傳輸功能,而沒有屏蔽,所以我們只需要在手機上安裝藍牙消息軟體,即可在小范圍內正常通信。

4. 用什麼辦法可以消除外界電磁波對某些儀器的影響和干擾

靜電屏蔽吧...弄一個金屬網的罩子也許有用,不過計算我就幫不上忙了。

5. 干擾效應及消除方法

原子吸收光譜法的主要干擾有物理干擾、化學干擾、電離干擾、光譜干擾和背景干擾等。

5.3.2.1 物理干擾

物理干擾是指試液與標准溶液物理性質之間有差異而產生的干擾。如黏度、表面張力或溶液的密度等的變化,影響樣品的霧化或氣溶膠到達火焰等引起原子吸收強度的變化而引起的干擾。為了消除物理干擾可採用配製與被測試樣組成相近的標准溶液或採用標准加入法的辦法。若試樣溶液的濃度高,還可採用稀釋法。

5.3.2.2 化學干擾

化學干擾是由於被測元素原子與共存組分發生化學反應生成穩定的化合物,因而影響被測元素的原子化而引起的干擾。消除化學干擾的方法有以下幾種。

(1)選擇合適的原子化方法

提高原子化溫度,減小化學干擾。使用高溫火焰或提高石墨爐原子化溫度,可使難離解的化合物分解。採用還原性強的火焰與石墨爐原子化法,可使難離解的氧化物還原、分解。

(2)加入釋放劑

釋放劑與干擾物質能生成比被測元素更穩定的化合物,使被測元素釋放出來。例如,磷酸根干擾鈣的測定,可在試液中加入鑭、鍶鹽,鑭、鍶與磷酸根首先生成比鈣更穩定的磷酸鹽,使得鈣被釋放出來。

(3)加入保護劑

保護劑可與被測元素生成易分解的或更穩定的配合物,防止被測元素與干擾組分生成難離解的化合物。保護劑一般是有機配合劑,如EDTA、8-羥基喹啉。

(4)加入基體改進劑

對於石墨爐原子化法,在試樣中加入基體改進劑,使其在乾燥或灰化階段與試樣發生化學變化,可以增加基體的揮發性或改變被測元素的揮發性,以消除干擾。

5.3.2.3 電離干擾

在高溫條件下,原子會電離,使基態原子數減少,吸光度下降,這種干擾稱為電離干擾。消除電離干擾的方法是加入過量的消電離劑。消電離劑是比被測元素電離電位低的元素,相同條件下消電離劑首先電離,產生大量的電子,抑制被測元素的電離。例如,測鈣時可加入過量的KCl溶液,以消除電離干擾,鈣的電離電位為6.1eV,鉀的電離電位為4.3 eV,由於鉀電離產生大量的電子,使得鈣離子得到電子而生成原子。

5.3.2.4 光譜干擾

共存元素吸收線與被測元素分析線波長很接近時,兩譜線重疊或部分重疊會使結果偏高。非吸收線可能是被測元素的其他共振線與非共振線,也可能是光源中雜質的譜線,一般通過減小狹縫寬度與燈電流或另選譜線消除非吸收線的干擾。

5.3.2.5 背景干擾

背景干擾也是一種光譜干擾。分子吸收與光散射是形成光譜背景的主要因素。

(1)分子吸收與光散射

分子吸收是指在原子化過程中生成的分子對輻射的吸收。分子吸收是帶狀光譜,會在一定的波長范圍內形成干擾。例如,鹼金屬鹵化物在紫外區有吸收;不同的無機酸會產生不同的影響,在波長小於250nm時,H2SO4和H3PO4有很強的吸收帶,而HNO3和HCl的吸收帶很弱。因此,原子吸收光譜分析中多用HNO3和HCl配製溶液。

光散射是指原子化過程中產生的微小的固體顆粒使光發生散射,導致透過光減小,吸收值增加。

(2)背景校正方法

A.鄰近非共振線背景校正法

背景吸收是寬頻吸收。分析線測量是原子吸收與背景吸收的總吸光度AT,AT在分析線鄰近選一條非共振線,非共振線不會產生共振吸收,此時測出的吸收為背景吸收AB。兩次測量吸光度相減,所得吸光度值即為扣除背景後的原子吸收吸光度值A。

AT=A+AB

A=AT-AB=kc

本法適用於分析線附近背景吸收變化不大的情況,否則准確度較差。

B.連續光源背景校正法

目前原子吸收分光光度計上一般都配有連續光源自動扣除背景裝置。連續光源在紫外區用氘燈;在可見區用碘鎢燈、氙燈。

氘燈產生的連續光譜進入單色器狹縫,通常是原子吸收線寬度的100倍左右。氘燈對原子吸收的信號為空心陰極燈原子信號的0.5%。由此,可以認為氘燈測出的主要是背景吸收信號,空心陰極燈測的是原子吸收和背景信號,兩者相減得到原子吸收值。氘燈校正法已廣泛應用於原子吸收光譜儀器中,氘燈校正的波長和原子吸收波長相同,校正效果顯然比非共振線法好。

氘燈校正背景是商品化儀器最普遍使用的技術,為了提高背景扣除能力,從電路和光路設計上都做了許多改進,自動化程度越來越高。

此法的缺點在於氘燈是一種氣體放電燈,而空心陰極燈屬於空心陰極濺射放電燈。兩者放電性質不同,能量分布不同,光斑大小不同,再加上兩個燈的光斑不易完全重疊,急劇的原子化又引起石墨爐中原子和分子濃度在時間和空間上的分布不均勻,因而造成背景扣除的誤差。

C.塞曼效應背景校正法

1886年荷蘭物理學家塞曼發現光源在強磁場作用下產生光譜線分裂的現象,這種現象稱為塞曼效應。與磁場施加於光源產生的塞曼效應(稱正向塞曼效應)相同,當磁場施加在吸收池時,同樣可觀測到吸收線的磁致分裂,即逆向塞曼效應,亦稱吸收線塞曼效應。

塞曼效應按觀察光譜線的方向不同又分為橫向塞曼效應及縱向塞曼效應,垂直於磁場方向觀察的是橫向塞曼效應,平行於磁場方向觀察的是縱向塞曼效應。橫向塞曼效應得到三條具有線偏振的譜線,譜線的波數分別為ν-Δν、ν、ν+Δν,中間波數未變化的譜線,其電向量的振動方向平行於磁場方向,稱為π成分;其他兩條譜線的波數變化分別為-Δν及+Δν,其電向量的振動方向垂直於磁場方向,稱為σ±成分。而縱向塞曼效應則觀察到波數分別為ν+Δν和ν-Δν的兩條圓偏振光,前者為順時針方向的圓偏振稱左旋偏振光,後者為反時針方向的圓偏振稱右旋偏振光,而中間頻率不變的π成分消失。

塞曼效應應用於原子吸收進行背景校正可有多種方法。可將磁場施加於光源,也可將磁場施加於原子化器;可利用橫向效應,也可利用縱向效應;可用恆定磁場,也可用交變磁場,交變磁場又分固定磁場強度和可變磁場強度。

由於條件限制,不是以上所有組合均可應用於原子吸收光譜儀。例如:縱向恆定磁場,由於沒有π成分而無法測量樣品的共振吸收;施加於光源的塞曼效應在前期的研究中做了大量的工作,但由於需要的特殊光源目前也不普及,只應用於某些專用裝置中。如塞曼測汞儀,因為汞燈可以製作得很小,能夠獲得較高的磁場強度。光源調制的另一個缺點是很難保證基線的長期穩定。目前商品化儀器應用較廣的多為施加於原子化器的塞曼效應背景校正裝置,主要有3種調制形式,分別為橫向恆定磁場、橫向交變磁場和縱向交變磁場。圖5.9為三種塞曼效應背景校正裝置的示意圖。

圖5.9 塞曼效應背景校正裝置

a—橫向恆定磁場;b—橫向交變磁場;c—縱向交變磁場

圖5.9a為橫向恆定磁場裝置,利用永久磁鐵產生強磁場,既可以應用於火焰原子化器,也可以應用於石墨爐原子化器。

圖5.9b為橫向交變磁場裝置,利用電磁鐵產生交變磁場。為產生高強度磁場,磁場尺寸一般製作得較小,因此在石墨爐原子化器應用較廣。橫向磁場施加於原子化器,當原子化器中有被測元素原子蒸氣時,其吸收線輪廓發生分裂(逆向塞曼效應),產生π成分及σ±成分。

利用光的矢量特性(只有偏振特性相同的光才能產生相互作用),引入旋轉起偏器將光源發出的共振輻射變成線偏振光。假定磁場方向平行於紙面,當旋轉起偏器轉動到共振輻射偏振特性平行於紙面時,形成樣品光,測量分析原子吸收及背景吸收,因為原子吸收線的π成分的偏振特性與其相同,產生分析原子吸收;當旋轉起偏器轉動到共振輻射偏振特性垂直於紙面時,形成參考光,測量背景吸收,因為原子吸收線的σ±成分與參考光的波長不同,不產生吸收,π成分的偏振特性與參考光不同,也不產生樣品吸收,而背景吸收通常是寬頻的,不產生塞曼分裂,對樣品及參考光束的吸收相同,兩個光束產生的吸光度相減即得凈分析原子吸收產生的吸光度,這是橫向塞曼效應校正背景的原理。

由於旋轉起偏器的加入,光源的光強至少減少50%,吸收線塞曼分裂的產生也對共振光的吸收減弱,因此這種背景校正裝置的主要不足之處就是靈敏度損失。

圖5.9c為縱向交變磁場裝置,由於縱向塞曼效應沒有π成分產生,也不需要旋轉起偏器,因此很好地解決了校正背景與靈敏度損失的矛盾。

為實施縱向塞曼效應,美國Perkin-Elmer公司對石墨爐體結構進行了改造,改縱向加熱石墨管為橫向加熱石墨管,改橫向磁場為縱向磁場,生產了4100ZL型橫向加熱縱向塞曼效應原子吸收光譜儀,並在其最新的Aanalyst800及SIMAA6100等儀器上推廣應用,取得了很好的效果。

背景校正裝置的一個主要缺點是比常規儀器的線性動態范圍小、靈敏度低。為克服線性動態范圍小的缺點,德國Jena公司開發了一種3磁場塞曼效應背景校正技術,可使測量的線性動態范圍擴充一個數量級。澳大利亞GBC科學儀器公司的Avanta UltraZ原子吸收分光光度計磁場強度為0.6~1.1 T(1T=1V·s·m-2),可以任意設定,對不同元素的不同背景干擾使用不同的磁場強度,可有效地提高儀器的靈敏度和測試精度。

6. 我的內心被別人用儀器干擾,亂了規律…現在狠崩潰,心理想法成了他們的對話機…我該怎麼辦

這是一種被害妄想。就目前來講,還沒有能幹擾人思維的儀器存在,你那種感覺其實是一中錯覺,不把它當回事,反而會沒事。

7. 醫學儀器 被干擾怎麼消除

你是設備廠家嗎? 如果是可以從設備本身入手,增加設備的抗擾度,可以增加濾波器,具體產品可以通過如下字的手機號和我聯系。

8. 信號干擾器怎麼破

1、尋找屏蔽位置 尋找干擾波不能幹擾或干擾小的位置,即干擾死角。干擾波和衛星波都是直線波,行進途中遇到障礙物都會被反射,但這兩種電波的區別在於,干擾波的場強大於衛星波數千萬倍,致使遇到障礙物及建築物後會四處反射,而衛星波如沒有被天線所反射則易被地表所吸收。

尋找屏蔽位置最簡單的方法是降低天線高度,利用四周自然物體避開周圍的強微波干擾信號,如:放在院子中要比放在屋頂上效果好;也可在地面上挖一個邊長為2mx2m的深方坑,深度可以根據情況自行掌握,原則是越深越好,但要注意天線前方(正南方向)不要被土遮擋,將天線置於坑底也就是說天線接收信號時不能被坑高遮擋;還可將天線移至建築物另一面,利用建築物來遮擋來自該方向的干擾源。

2、安裝防干擾裝置 衛星干擾信號是從地面來的,而衛星信號來自天空。只要把地面的衛星干擾信號屏蔽掉就OK了。用鐵皮或者鐵絲網給衛星天線做個圍牆,不擋住衛星信號但能擋住干擾信號,即可避免干擾。判斷出干擾波的來源方位,在天線的一側或多側架設金屬板(網)遮擋干擾波。金屬板(網)架設高度需超過高頻頭,且不能擋到衛星信號的行進路線。

由於C波段信號波長在71.4mm、88.2mm之間,如果採用金屬網屏蔽干擾波,為防止干擾源漏進金屬網,網孔孔徑應小於最短波長71.4mm的1/4,即小於17.85mm。干擾不太嚴重的話,也可在天線的外沿,垂直於鍋口平面,加一圈寬度為10~20cm的金屬帶。當然,金屬帶寬度越寬抗干擾性能也就越強,不過一鍋多星的天線不宜採用此法,它會遮擋非垂直於鍋面的衛星信號接收。

3、轉星或換Ku頭接收Ku波段信號 如果所要接收的信號,在其他衛星的C波段上也能夠接收到,可轉星接收,改變接收天線的方向,看看能否避開干擾波的干擾區域;另外也可轉星或換Ku頭接收Ku波段信號來避免干擾。這是最直接、最有效的方法。

9. 電子儀器抗干擾問題

使用帶有屏蔽層的線路,該接地線的設備要接地線
抗干擾接地處理的主要內容:(1)避開地環電流的干擾;(2)降低公共地線阻抗的耦合干擾。

「一點接地」有效地避開了地環電流;而在「一點接地」前提下,並聯接地則是降低公共地線阻抗的耦合干擾的有效措施;它們是工業控制系統採用的最基本的接地方法。

工業控制系統接地的含義不一定就是接大地。例如直流接地只是定義電路或系統的基準電位。它可以懸浮,但要求與大地嚴格絕緣。通常,其絕緣電阻要達到50 MΩ以上。直流地懸浮隔離了交流地網的干擾,經濟簡便,工程中經常使用。直流地懸浮的缺點是機器容易帶靜電,如果該靜電電位過高,會損壞器件,擊傷操作人員等等;而且,如果這時直流地與大地的絕緣電阻減小,可能會產生很多原先沒有想到的干擾。直流地接大地,按照國家標准,要埋設一個不大於4 Ω的獨立接地體。但無論直流地懸浮或者接大地,直流地與大地之間的電位都存在著間接或者直接的關系。工業控制機所操作的各種輸入輸出信號之間接地是否合理,不只是形成相互耦合干擾的問題,有時還危及計算機系統的安全。在實際的工業控制系統中,各種通道的信號頻率大多在1MHz內,屬於低頻范圍。因此,談談低頻范圍的接地。

1. 串聯接地

在串聯接地方式中,各電路各有一個電流i1、i2、i3等流向接地點。由於地線存在電阻,因此,每個串聯接點的電位不再是零,於是各個電路間相互發生干擾。尤其是強信號電路將嚴重干擾弱信號電路。如果必須要這樣使用,應當盡力減小公共地線的阻抗,使其能達到系統的抗干擾容限要求。串聯的次序是:最怕干擾的電路的地應最接近公共地,而最不怕干擾的電路的地可以稍遠離公共地。

2. 並聯接地

並聯接地方式:在工業控制機中的模擬通道和數字通道採用並聯接地。並聯接地中各個電路的地電位只與其自身的地線阻抗和地電流有關,互相之間不會造成耦合干擾。因此,有效地克服了公共地線阻抗的耦合干擾問題,工業控制機應當盡量採用並聯接地方式。值得注意的是,雖然採用了並聯接地方式,但是地線仍然要粗一些,以使各個電路部件之間的地電位差盡量減小。這樣,當各個部件之間有信號傳送時,地線環流干擾將減小。

工業現場的干擾來源是多渠道的,針對不同的項目和不同的現場,應該有不同的處理方法。屏蔽和接地是由工控系統開發者操作的一項技術內容。能否正確設計和利用它們,不僅關繫到系統安全穩定地運行、良好地抑制干擾,而且是工控項目開發者是否成熟的重要標志。

工控系統的屏蔽處理

工業現場動力線路密布,設備啟停運轉繁忙,因此存在嚴重的電場和磁場干擾。而工業控制系統又有幾十乃至幾百個甚至更多的輸入輸出通道分布在其中,導線之間形成相互耦合是通道干擾的主要原因之一。它們主要表現為電容性耦合、電感性耦合、電磁場輻射三種形式。在工業控制系統中,由前兩種耦合造成的干擾是主要的,第三種是次要的。它們對電路主要造成共模形式的干擾。

眾所周知,地球是一個靜電容量很大的導體,其電位非常恆定。如果把一個導體與大地緊密連接,那麼該導體的電位也是恆定的。我們把它的電位叫作零電位,它是電位的參考點。然而,工程上不可能做到這種緊密連接,總是存在一定的接地電阻。當有電流經該導體入地時,它的電位就有波動。於是,不同的接地點之間會有電位差。當我們用一根導線連接不同的接地點時,在導線中就可能有電流流動,這稱為地環電流。接地抗干擾技術就是解決以地環電流為中心的一系列技術問題。

1. 電場耦合的屏蔽和抑制技術

克服電場耦合干擾最有效的方法是屏蔽。因為放置在空心導體或者金屬網內的物體不受外電場的影響。請注意,屏蔽電場耦合干擾時,導線的屏蔽層最好不要兩端連接當地線使用。因在有地環電流時,這將在屏蔽層形成磁場,干擾被屏蔽的導線。正確的作法是把屏蔽層單點接地,一般選擇它的任一端頭接地。造成電場耦合干擾的原因是兩根導線之間的分布電容產生的耦合。當兩導線形成電場耦合干擾時,導線1在導線2上產生的對地干擾電壓VN為:V1和ω是干擾源導線1的電壓和角頻率;R和C2G是被干擾導線2的對地負載電阻和總電容;C12是導線1和導線2之間的分布電容。從式(2)可以看出,在干擾源的角頻率ω不變時,要想降低導線2上的被干擾電壓VN ,應當減小導線1的電壓V1,減小兩導線之間的分布電容C12,減小導線2對地負載電阻R以及增大導線2對地的總電容C2G。在這些措施中,可操作性最好的是減小兩導線之間的分布電容C12。即採用遠離技術:弱信號線要遠離強信號線敷設,尤其是遠離動力線路。工程上的「遠離」概念,通常取干擾導線直徑的40倍,即認為足夠了。同時,避免平行走線也可以減小C12。

2. 磁場耦合的抑制技術

抑制磁場耦合干擾的好辦法應該是屏蔽干擾源。大電機、電抗器、磁力開關和大電流載流導線等等都是很強的磁場干擾源。但把它們都用導磁材料屏蔽起來,在工程上是很難做到的。通常是採用一些被動的抑制技術。當迴路1對迴路2造成磁場耦合干擾時,其在迴路2 上形成的串聯干擾電壓VN為:

VN=jωBAcosθ (3) ,式中,ω是干擾信號的角頻率;B是干擾源迴路1形成的磁場鏈接至迴路2處的磁通密度;A為迴路2感受磁場感應的閉合面積,θ是和兩個矢量的夾角。可以看出,在干擾源的角頻率ω不變時,要想降低干擾電壓VN,首先應當減小B。對於直線電流磁場來說,B與迴路1流過的電流成正比,而與兩導線的距離成反比。因此,要有效抑制磁場耦合干擾,仍然是遠離技術。同時,也要避免平行走線。

3. 屏蔽線的使用

屏蔽線的接地有三種情況,即:單端接地方式、兩端接地方式、屏蔽層懸浮。(1)單端接地方式:假設信號電流i1從芯線流入屏蔽線,流過負載電阻RL之後,再通過屏蔽層返回信號源。因為i1與i2大小相等方向相反,所以它們產生的磁場干擾相互抵消。這是一個很好的抑制磁場干擾的措施。同時它也是一個很好的抵制磁場耦合干擾的措施。(2)兩端接地方式:由於屏蔽層上流過的電流是i2與地環電流iG的迭加,所以它不能完全抵消信號電流所產生的磁場干擾。因此,它抑制磁場耦合干擾的能力也比單端接地方式差。單端接地方式與兩端接地方式都有屏蔽電場耦合干擾作用。(3)屏蔽層懸浮:只有屏蔽電場耦合干擾能力,而無抑制磁場耦合干擾能力。

4 . 雙絞線的使用

如果雙絞線的絞扭一致的話,那麼這些小迴路的面積相等而法方向相反,因此,其磁場干擾可以相互抵消。雙絞線的結構對電場耦合干擾的抑制毫無能力。當給雙絞線加上屏蔽層後,一個價廉物美的傳輸線就誕生了。根據國外專家的實驗測定,屏蔽層接地方法不同對磁場干擾的抑制dB數也不同。(1)單端接地方式,對磁場干擾具有高達55dB的衰減能力。可見,雙絞線確實有很好的效果。(2)兩端接地方式,地線阻抗與信號線阻抗不對稱,地環電流造成了雙絞線電流不平衡,因此降低了雙絞線抗磁場干擾的能力,只有13dB的磁場干擾衰減能力。(3)使用屏蔽雙絞線,其屏蔽層一端接地,另一端懸空,因此屏蔽層上沒有返回信號電流,所以它的屏蔽層只有抗電場干擾能力,而無抑制磁場耦合干擾能力。與單端接地方式一樣衰減55dB。(4)屏蔽層單端接地,而另一端又與負載冷端相連,因此它具有兩端接地方式的效果,但它的屏蔽層上的電流由於被雙絞線中的一根分流,又比兩端接地方式稍差。具有77dB的衰減。(5)屏蔽層雙端接地,具有一定的抑制磁場耦合干擾能力,加上雙絞線本身的作用,因此具有63dB的衰減。(6)屏蔽層和雙絞線都兩端接地,其效果具有28dB衰減。

雙絞線最好的應用是作平衡式傳輸線路。因為兩條線的阻抗一樣,自身產生的磁場干擾或外部磁場干擾都可以較好的抵消。同時,平衡式傳輸又獨具很強的抗共模干擾能力,因此成為大多數計算機網路的傳輸線。例如,物理層採用RS422A或RS485通信介面,就是很好的平衡傳輸模式。

10. 如果在使用功率分析儀進行測試時遇到干擾怎麼辦

常見的抗干擾技術有以下幾種,在使用功率分析儀測試遇到干擾時,也主專要按照一下思屬路來解決異常。
屏蔽:
當干擾相對較大時,請考慮使用具有良好屏蔽性能的同軸電纜。
濾波:
選擇合適的濾波裝置,或者在設備上設置合適的濾波條件。
接地:
接地技術相對復雜,但在強弱系統中,接地是一種更好的屏蔽干擾技術。 (具體的接地方法和聽下一次分解)
當然,如果您使用更新的功率分析儀,有一些設置可以幫助消除干擾信號。例如,PA系列功率分析儀可以通過在測試電機機械信號時設置閾值電平來阻擋一些小干擾信號,並且更方便識別脈沖信號的頻率值。
總之,在電參數測試的復雜環境中,如果要求儀器的「抗干擾」更強,則應更加註意設置,屏蔽技術和濾波技術。

熱點內容
線切割怎麼導圖 發布:2021-03-15 14:26:06 瀏覽:709
1台皮秒機器多少錢 發布:2021-03-15 14:25:49 瀏覽:623
焊接法蘭如何根據口徑配螺栓 發布:2021-03-15 14:24:39 瀏覽:883
印章雕刻機小型多少錢 發布:2021-03-15 14:22:33 瀏覽:395
切割機三五零木工貝片多少錢 發布:2021-03-15 14:22:30 瀏覽:432
加工盜磚片什麼櫸好 發布:2021-03-15 14:16:57 瀏覽:320
北洋機器局製造的銀元什麼樣 發布:2021-03-15 14:16:52 瀏覽:662
未來小七機器人怎麼更新 發布:2021-03-15 14:16:33 瀏覽:622
rexroth加工中心亂刀怎麼自動調整 發布:2021-03-15 14:15:05 瀏覽:450
機械鍵盤的鍵帽怎麼選 發布:2021-03-15 14:15:02 瀏覽:506