激光加工的應用有哪些分別有什麼特點
㈠ 激光加工的應用
激光技術與原子能、半導體及計算機一起,是二十世紀最負盛名的四項重大發明。
激光作為上世紀發明的新光源,它具有方向性好、亮度高、單色性好及高能量密度等特點,已廣泛應用於工業生產、通訊、信息處理、醫療衛生、軍事、文化教育以及科研等方面。據統計,從高端的光纖到常見的條形碼掃描儀,每年與激光相關產品和服務的市場價值高達上萬億美元。中國激光產品主要應用於工業加工,占據了40%以上的市場空間。
激光加工作為激光系統最常用的應用,主要技術包括激光焊接、激光切割、表面改性、激光打標、激光鑽孔、微加工及光化學沉積、立體光刻、激光刻蝕等。
激光加工設備就是利用激光加工技術改造傳統製造業的關鍵技術設備之一,主要產品則包括各類激光打標機、焊接機、切割機、劃片機、雕刻機、熱處理機、三維成型機以及毛化機等。這類產品已經或正在進入各工業領域。
具體應用
一、在服裝行業的應用
因為激光加工工藝具有自動化程度高、加工精確高、速度快、效率高、操作簡單方便等特點,適應了國際服裝生產技術潮流所以激光加工技術以及設備正在以驚人的速度在服裝行業內得到推廣和普及。
1、激光切割應用
激光切割過程中,不會使布料變形或起皺,激光切割尺寸精度高,激光切割形狀可隨著圖稿進行任意更改,增加了設計的實用性和創造性。另外,激光切割技術是用「激光刀」代替金屬刀,激光切割任何面料,能瞬間將切口熔化並凝固,縫隙小、精確度高達到自動「鎖邊」的功能。傳統工藝用刀模切割或熱加工,切口易脫絲、發黃、發硬。
2、激光雕刻應用
激光雕刻是利用軟體技術,按設計圖稿輸入數據進行自動雕刻。激光雕刻是激光加工技術在服裝行業中運用最成熟、最廣泛的技 術,能雕刻任何復雜圖形標志,還可以進行射穿的鏤空雕刻和表面雕刻,從而雕刻出深淺不一、質感不同、具有層次感和過渡顏色效果的各種圖案。
3、激光打標應用
激光打標具有打標精度高、速度快、標記清晰等特點。激光打標兼容了激光切割、雕刻技術的各種優點,可以在各種材料上進行精密加工,還可以加工尺寸小且復雜的圖案,激游標記具有永不磨損的防偽性能。
激光加工在電子行業應用
二、在電子工業中的應用
激光加工技術屬於非接觸性加工方式,所以不產生機械擠壓或機械應力,特別符合電子行業的加工要求。另外,還由於激光加工技術的高效率、無污染、高精度、熱影響區小,因此在電子工業中得到廣泛應用。
1、激光劃片
激光劃技術是生產集成電路的關鍵技術,其劃線細、精度高(線寬為15-25μm,槽深5-200μm)、加工速度快(可達200mm/s),成品率達 99.5%以上。集成電路生產過程中,在一塊基片上要制備上千個電路,在封裝前要把它們分割成單個管芯。傳統的方法是用金剛石砂輪切割,矽片表面因受機械力而產生輻射狀裂紋。用激光劃線技術進行劃片,把激光束聚焦在矽片表面,產生高溫使材料汽化而形成溝槽。通過調節脈沖重疊量可精確控制刻槽深度,使矽片很容易沿溝槽整齊斷開,也可進行多次割劃而直接切開。由於激光被聚焦成極小的光斑,熱影響區極小,切劃50μm深的溝槽時,在溝槽邊25μm的地方溫升不會影響有源器件的性能。激光劃片是非接觸加工,矽片不會受機械力而產生裂紋。因此可以達到提高矽片利用率、成品率高和切割質量好的目的。還可用於單晶硅、多晶硅、非晶硅太陽能電池的劃片以及硅、鍺、砷化稼和其他半導體襯底材料的劃片與切割。
2、激光微調
激光微調技術可對指定電阻進行自動精密微調,精度可達0.01%一0.002%,比傳統方法的精度和效率高,成本低。集成電路、感測器中的電阻是一層電阻薄膜,製造誤差達上15一20%,只有對之進行修正,才能提高那些高精度器件的成品率。激光可聚焦成很小的光斑,能量集中,加工時對鄰近的元件熱影響極小,不產生污染,又易於用計算機控制,因此可以滿足快速微調電阻使之達到精確的預定值的目的。加工時將激光束聚焦在電阻薄膜上,將物質汽化。微調時首先對電阻進行測量,把數據傳送給計算機,計算機根據預先設計好的修調方法指令光束定位器使激光按一定路徑切割電阻,直至阻值達到設定值,同樣可以用激光技術進行片狀電容的電容量修正及混合集成電路的微調。優越的定位精度,使激光微調系統在小型化精密線形組合信號器件方面提高了產量和電路功能。
3、激光打標
激光打標是利用高能量密度的激光對工件進行局部照射,使表層材料汽化或發生顏色變化的化學反應,從而留下永久性標記的一種打標方法。激光打標有雕刻和掩模成像兩種方式:掩模式打標用激光把模版圖案成像到工件表面而燒蝕出標記。雕刻式打標是一種高速全功能打標系統。激光束經二維光學掃描振鏡反射後經平場光學鏡頭聚焦到工件表面,在計算機控制下按設定的軌跡使材料汽化,可以打出各種文字、符號和圖案等,字元大小可以從毫米到微米量級,激游標記是永久性的,不易磨損,這對產品的防偽有特殊的意義。已大量用在給電子元器件、集成電路打商標型號、給印刷電路板打編號等。紫外波段激光技術發展很快,由於材料在紫外波激光作用下發生電子能帶躍遷,打破或削弱分子間的結合鍵,從而實現剝蝕加工,加工邊緣十分齊整,因此在激游標記技術中異軍突起,尤其受到微電子行業的重視。
㈡ 激光加工都有哪些優勢特點
從全球激光產品的應用領域來看,材料加工行業仍是其主要的應用市場,佔比為35.2%;通信行業排名第二,其所佔比重為30.6%;另外,數據存儲行業占據第三位,其所佔比重為12.6%。
與傳統加工技術相比,激光加工技術具有材料浪費少、在規模化生產中成本效應明顯、對加工對象具有很強的適應性等優勢特點。在歐洲,對高檔汽車車殼與底座、飛機機翼以及航天器機身等特種材料的焊接,基本採用的是激光技術。
1、激光功率密度大,工件吸收激光後溫度迅速升高而熔化或汽化,即使熔點高、硬度大和質脆的材料(如陶瓷、金剛石等)也可用激光加工;
2、激光頭與工件不接觸,不存在加工工具磨損問題;
3、工件不受應力,不易污染;
4、可以對運動的工件或密封在玻璃殼內的材料加工;
5、激光束的發散角可小於1毫弧,光斑直徑可小到微米量級,作用時間可以短到納秒和皮秒,同時,大功率激光器的連續輸出功率又可達千瓦至十千瓦量級,因而激光既適於精密微細加工,又適於大型材料加工;
6、激光束容易控制,易於與精密機械、精密測量技術和電子計算機相結合,實現加工的高度自動化和達到很高的加工精度;
7、在惡劣環境或其他人難以接近的地方,可用機器人進行激光加工。
激光加工屬於無接觸加工,並且高能量激光束的能量及其移動速度均可調,因此可以實現多種加工的目的。它可以對多種金屬、非金屬加工,特別是可以加工高硬度、高脆性及高熔點的材料。激光加工柔性大主要用於切割、表面處理、焊接、打標和打孔等。激光表面處理包括激光相變硬化、激光熔敷、激光表面合金化和激光表面熔凝等。
激光加工技術主要有以下獨特的優點:
①使用激光加工,生產效率高,質量可靠,經濟效益。
②可以通過透明介質對密閉容器內的工件進行各種加工;在惡劣環境或其他人難以接近的地方,可用機器人進行激光加工。
③激光加工過程中無「刀具」磨損,無「切削力」作用於工件。
④可以對多種金屬、非金屬加工,特別是可以加工高硬度、高脆性及高熔點的材料。
⑤激光束易於導向、聚焦實現作各方向變換,極易與數控系統配合、對復雜工件進行加工,因此它是一種極為靈活的加工方法。
⑥無接觸加工,對工件無直接沖擊,因此無機械變形,並且高能量激光束的能量及其移動速度均可調,因此可以實現多種加工的目的。
⑦激光加工過程中,激光束能量密度高,加工速度快,並且是局部加工,對非激光照射部位沒有或影響極小,因此,其熱影響區小,工件熱變形小,後續加工量小。
⑧激光束的發散角可<1毫弧,光斑直徑可小到微米量級,作用時間可以短到納秒和皮秒,同時,大功率激光器的連續輸出功率又可達千瓦至10kW量級,因而激光既適於精密微細加工,又適於大型材料加工。激光束容易控制,易於與精密機械、精密測量技術和電子計算機相結合,實現加工的高度自動化和達到很高的加工精度。
激光加工技術已在眾多領域得到廣泛應用,隨著激光加工技術、設備、工藝研究的不斷深進,將具有更廣闊的應用遠景。由於加工過程中輸入工件的熱量小,所以熱影響區和熱變形小;加工效率高,易於實現自動化。
㈢ 激光加工的原理是什麼有何特點
激光雕刻加工是激光系統最常用的應用。根據激光束與材料相互作用的機理,版大體可將激光加工分權為激光熱加工和光化學反應加工兩類。激光熱加工是指利用激光束投射到材料表面產生的熱效應來完成加工過程,包括激光焊接、激光雕刻切割、表面改性、激光鐳射打標、激光鑽孔和微加工等;光化學反應加工是指激光束照射到物體,藉助高密度激光高能光子引發或控制光化學反應的加工過程。包括光化學沉積、立體光刻、激光雕刻刻蝕等。
激光加工是利用光的能量經過透鏡聚焦後在焦點上達到很高的能量密度,靠光熱效應來加工的。激光加工不需要工具、加工速度快、表面變形小,可加工各種材料。用激光束對材料進行各種加工,如打孔、切割、劃片、焊接、熱處理等。某些具有亞穩態能級的物質,在外來光子的激發下會吸收光能,使處於高能級原子的數目大於低能級原子的數目——粒子數反轉,若有一束光照射,光子的能量等於這兩個能相對應的差,這時就會產生受激輻射,輸出大量的光能。
㈣ 激光加工的原理及特點有哪些
1.激光加工的原理
激光加工是將激光束照射到工件的表面,以激光的高能量來切除、熔化材料以及改變物體表面性能。由於激光加工是無接觸式加工,工具不會與工件的表面直接磨察產生阻力,所以激光加工的速度極快、加工對象受熱影響的范圍較小而且不會產生噪音。由於激光束的能量和光束的移動速度均可調節,因此激光加工可應用到不同層面和范圍上。
2.激光加工的特點:
激光具有的寶貴特性決定了激光在加工領域存在的優勢:
①由於它是無接觸加工,並且高能量激光束的能量及其移動速度均可調,因此可以實現多種加工的目的。
②它可以對多種金屬、非金屬加工,特別是可以加工高硬度、高脆性、及高熔點的材料。
③激光加工過程中無「刀具」磨損,無「切削力」作用於工件。
④激光加工過程中,激光束能量密度高,加工速度快,並且是局部加工,對非激光照射部位沒有影響或影響極小。因此,其熱影響區小,工件熱變形小,後續加工量小。
⑤它可以通過透明介質對密閉容器內的工件進行各種加工。
⑥由於激光束易於導向、聚集實現作各方向變換,極易與數控系統配合,對復雜工件進行加工,因此是一種極為靈活的加工方法。
⑦使用激光加工,生產效率高,質量可靠,經濟效益好。例如:①美國通用電器公司採用板條激光器加工航空發動機上的異形槽,不到4H即可高質量完成,而原來採用電火花加工則需要9H以上。僅此一項,每台發動機的造價可省5萬美元。②激光切割鋼件工效可提高8-20倍,材料可節省15-30%,大幅度降低了生產成本,並且加工精度高,產品質量穩定可靠。雖然激光加工擁有許多優點,但不足之處也是很明顯的。
㈤ 激光加工都可以應用到哪些領域
激光技術與原子能、半導體及計算機一起,是二十世紀最負盛名的四項重大發明。
激光作為上世紀發明的新光源,它具有方向性好、亮度高、單色性好及高能量密度等特點,已廣泛應用於工業生產、通訊、信息處理、醫療衛生、軍事、文化教育以及科研等方面。據統計,從高端的光纖到常見的條形碼掃描儀,每年與激光相關產品和服務的市場價值高達上萬億美元。中國激光產品主要應用於工業加工,占據了40%以上的市場空間。
激光加工作為激光系統最常用的應用,主要技術包括激光焊接、激光切割、表面改性、激光打標、激光鑽孔、微加工及光化學沉積、立體光刻、激光刻蝕等。
激光加工設備就是利用激光加工技術改造傳統製造業的關鍵技術設備之一,主要產品則包括各類激光打標機、焊接機、切割機、劃片機、雕刻機、熱處理機、三維成型機以及毛化機等。這類產品已經或正在進入各工業領域。
激光加工技術具體應用:
一、在服裝行業的應用
因為激光加工工藝具有自動化程度高、加工精確高、速度快、效率高、操作簡單方便等特點,適應了國際服裝生產技術潮流所以激光加工技術以及設備正在以驚人的速度在服裝行業內得到推廣和普及。
1、激光切割應用
激光切割過程中,不會使布料變形或起皺,激光切割尺寸精度高,激光切割形狀可隨著圖稿進行任意更改,增加了設計的實用性和創造性。另外,激光切割技術是用「激光刀」代替金屬刀,激光切割任何面料,能瞬間將切口熔化並凝固,縫隙小、精確度高達到自動「鎖邊」的功能。傳統工藝用刀模切割或熱加工,切口易脫絲、發黃、發硬。
2、激光雕刻應用
激光雕刻是利用軟體技術,按設計圖稿輸入數據進行自動雕刻。激光雕刻是激光加工技術在服裝行業中運用最成熟、最廣泛的技術,能雕刻任何復雜圖形標志,還可以進行射穿的鏤空雕刻和表面雕刻,從而雕刻出深淺不一、質感不同、具有層次感和過渡顏色效果的各種圖案。
3、激光打標應用
激光打標具有打標精度高、速度快、標記清晰等特點。激光打標兼容了激光切割、雕刻技術的各種優點,可以在各種材料上進行精密加工,還可以加工尺寸小且復雜的圖案,激游標記具有永不磨損的防偽性能。
二、在電子工業中的應用
激光加工技術屬於非接觸性加工方式,所以不產生機械擠壓或機械應力,特別符合電子行業的加工要求。另外,還由於激光加工技術的高效率、無污染、高精度、熱影響區小,因此在電子工業中得到廣泛應用。
1、激光劃片
激光劃技術是生產集成電路的關鍵技術,其劃線細、精度高(線寬為15-25μm,槽深5-200μm)、加工速度快(可達200mm/s),成品率達99.5%以上。集成電路生產過程中,在一塊基片上要制備上千個電路,在封裝前要把它們分割成單個管芯。傳統的方法是用金剛石砂輪切割,矽片表面因受機械力而產生輻射狀裂紋。用激光劃線技術進行劃片,把激光束聚焦在矽片表面,產生高溫使材料汽化而形成溝槽。通過調節脈沖重疊量可精確控制刻槽深度,使矽片很容易沿溝槽整齊斷開,也可進行多次割劃而直接切開。由於激光被聚焦成極小的光斑,熱影響區極小,切劃50μm深的溝槽時,在溝槽邊25μm的地方溫升不會影響有源器件的性能。激光劃片是非接觸加工,矽片不會受機械力而產生裂紋。因此可以達到提高矽片利用率、成品率高和切割質量好的目的。還可用於單晶硅、多晶硅、非晶硅太陽能電池的劃片以及硅、鍺、砷化稼和其他半導體襯底材料的劃片與切割。
2、激光微調
激光微調技術可對指定電阻進行自動精密微調,精度可達0.01%一0.002%,比傳統方法的精度和效率高,成本低。集成電路、感測器中的電阻是一層電阻薄膜,製造誤差達上15一20%,只有對之進行修正,才能提高那些高精度器件的成品率。激光可聚焦成很小的光斑,能量集中,加工時對鄰近的元件熱影響極小,不產生污染,又易於用計算機控制,因此可以滿足快速微調電阻使之達到精確的預定值的目的。加工時將激光束聚焦在電阻薄膜上,將物質汽化。微調時首先對電阻進行測量,把數據傳送給計算機,計算機根據預先設計好的修調方法指令光束定位器使激光按一定路徑切割電阻,直至阻值達到設定值,同樣可以用激光技術進行片狀電容的電容量修正及混合集成電路的微調。優越的定位精度,使激光微調系統在小型化精密線形組合信號器件方面提高了產量和電路功能。
3、激光打標
激光打標是利用高能量密度的激光對工件進行局部照射,使表層材料汽化或發生顏色變化的化學反應,從而留下永久性標記的一種打標方法。激光打標有雕刻和掩模成像兩種方式:掩模式打標用激光把模版圖案成像到工件表面而燒蝕出標記。雕刻式打標是一種高速全功能打標系統。激光束經二維光學掃描振鏡反射後經平場光學鏡頭聚焦到工件表面,在計算機控制下按設定的軌跡使材料汽化,可以打出各種文字、符號和圖案等,字元大小可以從毫米到微米量級,激游標記是永久性的,不易磨損,這對產品的防偽有特殊的意義。已大量用在給電子元器件、集成電路打商標型號、給印刷電路板打編號等。紫外波段激光技術發展很快,由於材料在紫外波激光作用下發生電子能帶躍遷,打破或削弱分子間的結合鍵,從而實現剝蝕加工,加工邊緣十分齊整,因此在激游標記技術中異軍突起,尤其受到微電子行業的重視。
㈥ 激光加工有哪些用途
激光技術與原子能、半導體及計算機一起,是二十世紀最負盛名的四項重大發明。
激光作為上世紀發明的新光源,它具有方向性好、亮度高、單色性好及高能量密度等特點,已廣泛應用於工業生產、通訊、信息處理、醫療衛生、軍事、文化教育以及科研等方面。據統計,從高端的光纖到常見的條形碼掃描儀,每年與激光相關產品和服務的市場價值高達上萬億美元。中國激光產品主要應用於工業加工,占據了40%以上的市場空間。
激光加工作為激光系統最常用的應用,主要技術包括激光焊接、激光切割、表面改性、激光打標、激光鑽孔、微加工及光化學沉積、立體光刻、激光刻蝕等。
激光加工設備就是利用激光加工技術改造傳統製造業的關鍵技術設備之一,主要產品則包括各類激光打標機、焊接機、切割機、劃片機、雕刻機、熱處理機、三維成型機以及毛化機等。這類產品已經或正在進入各工業領域。
具體應用
一、在服裝行業的應用
因為激光加工工藝具有自動化程度高、加工精確高、速度快、效率高、操作簡單方便等特點,適應了國際服裝生產技術潮流所以激光加工技術以及設備正在以驚人的速度在服裝行業內得到推廣和普及。
1、激光切割應用
激光切割過程中,不會使布料變形或起皺,激光切割尺寸精度高,激光切割形狀可隨著圖稿進行任意更改,增加了設計的實用性和創造性。另外,激光切割技術是用「激光刀」代替金屬刀,激光切割任何面料,能瞬間將切口熔化並凝固,縫隙小、精確度高達到自動「鎖邊」的功能。傳統工藝用刀模切割或熱加工,切口易脫絲、發黃、發硬。
2、激光雕刻應用
激光雕刻是利用軟體技術,按設計圖稿輸入數據進行自動雕刻。激光雕刻是激光加工技術在服裝行業中運用最成熟、最廣泛的技 術,能雕刻任何復雜圖形標志,還可以進行射穿的鏤空雕刻和表面雕刻,從而雕刻出深淺不一、質感不同、具有層次感和過渡顏色效果的各種圖案。
3、激光打標應用
激光打標具有打標精度高、速度快、標記清晰等特點。激光打標兼容了激光切割、雕刻技術的各種優點,可以在各種材料上進行精密加工,還可以加工尺寸小且復雜的圖案,激游標記具有永不磨損的防偽性能。
激光加工在電子行業應用
二、在電子工業中的應用
激光加工技術屬於非接觸性加工方式,所以不產生機械擠壓或機械應力,特別符合電子行業的加工要求。另外,還由於激光加工技術的高效率、無污染、高精度、熱影響區小,因此在電子工業中得到廣泛應用。
1、激光劃片
激光劃技術是生產集成電路的關鍵技術,其劃線細、精度高(線寬為15-25μm,槽深5-200μm)、加工速度快(可達200mm/s),成品率達 99.5%以上。集成電路生產過程中,在一塊基片上要制備上千個電路,在封裝前要把它們分割成單個管芯。傳統的方法是用金剛石砂輪切割,矽片表面因受機械力而產生輻射狀裂紋。用激光劃線技術進行劃片,把激光束聚焦在矽片表面,產生高溫使材料汽化而形成溝槽。通過調節脈沖重疊量可精確控制刻槽深度,使矽片很容易沿溝槽整齊斷開,也可進行多次割劃而直接切開。由於激光被聚焦成極小的光斑,熱影響區極小,切劃50μm深的溝槽時,在溝槽邊25μm的地方溫升不會影響有源器件的性能。激光劃片是非接觸加工,矽片不會受機械力而產生裂紋。因此可以達到提高矽片利用率、成品率高和切割質量好的目的。還可用於單晶硅、多晶硅、非晶硅太陽能電池的劃片以及硅、鍺、砷化稼和其他半導體襯底材料的劃片與切割。
2、激光微調
激光微調技術可對指定電阻進行自動精密微調,精度可達0.01%一0.002%,比傳統方法的精度和效率高,成本低。集成電路、感測器中的電阻是一層電阻薄膜,製造誤差達上15一20%,只有對之進行修正,才能提高那些高精度器件的成品率。激光可聚焦成很小的光斑,能量集中,加工時對鄰近的元件熱影響極小,不產生污染,又易於用計算機控制,因此可以滿足快速微調電阻使之達到精確的預定值的目的。加工時將激光束聚焦在電阻薄膜上,將物質汽化。微調時首先對電阻進行測量,把數據傳送給計算機,計算機根據預先設計好的修調方法指令光束定位器使激光按一定路徑切割電阻,直至阻值達到設定值,同樣可以用激光技術進行片狀電容的電容量修正及混合集成電路的微調。優越的定位精度,使激光微調系統在小型化精密線形組合信號器件方面提高了產量和電路功能。
3、激光打標
激光打標是利用高能量密度的激光對工件進行局部照射,使表層材料汽化或發生顏色變化的化學反應,從而留下永久性標記的一種打標方法。激光打標有雕刻和掩模成像兩種方式:掩模式打標用激光把模版圖案成像到工件表面而燒蝕出標記。雕刻式打標是一種高速全功能打標系統。激光束經二維光學掃描振鏡反射後經平場光學鏡頭聚焦到工件表面,在計算機控制下按設定的軌跡使材料汽化,可以打出各種文字、符號和圖案等,字元大小可以從毫米到微米量級,激游標記是永久性的,不易磨損,這對產品的防偽有特殊的意義。已大量用在給電子元器件、集成電路打商標型號、給印刷電路板打編號等。紫外波段激光技術發展很快,由於材料在紫外波激光作用下發生電子能帶躍遷,打破或削弱分子間的結合鍵,從而實現剝蝕加工,加工邊緣十分齊整,因此在激游標記技術中異軍突起,尤其受到微電子行業的重視。
㈦ 激光有哪些特點,具有哪些重要應用
激光的特點
1、定向發光
普通光源是向四面八方發光。要讓發射的光朝一個方向傳播,需要給光源裝上一定的聚光裝置,如汽車的車前燈和探照燈都是安裝有聚光作用的反光鏡,使輻射光匯集起來向一個方向射出。激光器發射的激光,天生就是朝一個方向射出,光束的發散度極小,大約只有0.001弧度,接近平行。
1962年,人類第一次使用激光照射月球,地球離月球的距離約38萬公里,但激光在月球表面的光斑不到兩公里。若以聚光效果很好,看似平行的探照燈光柱射向月球,按照其光斑直徑將覆蓋整個月球。
2、亮度極高
在激光發明前,人工光源中高壓脈沖氙燈的亮度最高,與太陽的亮度不相上下,而紅寶石激光器的激光亮度,能超過氙燈的幾百億倍。因為激光的亮度極高,所以能夠照亮遠距離的物體。
紅寶石激光器發射的光束在月球上產生的照度約為0.02勒克斯(光照度的單位),顏色鮮紅,激光光斑明顯可見。若用功率最強的探照燈照射月球,產生的照度只有約一萬億分之一勒克斯,人眼根本無法察覺。
激光亮度極高的主要原因是定向發光。大量光子集中在一個極小的空間范圍內射出,能量密度自然極高。
3、顏色極純
光的顏色由光的波長(或頻率)決定。一定的波長對應一定的顏色。太陽光的波長分布范圍約在0.76微米至0.4微米之間,對應的顏色從紅色到紫色共7種顏色,所以太陽光談不上單色性。發射單種顏色光的光源稱為單色光源,它發射的光波波長單一。
比如氪燈、氦燈、氖燈、氫燈等都是單色光源,只發射某一種顏色的光。單色光源的光波波長雖然單一,但仍有一定的分布范圍。
如氪燈只發射紅光,單色性很好,被譽為單色性之冠,波長分布的范圍仍有0.00001納米,因此氪燈發出的紅光,若仔細辨認仍包含有幾十種紅色。由此可見,光輻射的波長分布區間越窄,單色性越好。
激光加工主要涉及:激光焊接、激光切割、激光打標、激光雕刻等.現在一般的激光加工都採用了多項先進技術,多功能集成度高、實用性強、自動化程度高、操作簡單、結果直觀,而且加工過程中可實現動態同步跟蹤顯示,具有程序錯誤自動診斷、限位保護等功能。
(7)激光加工的應用有哪些分別有什麼特點擴展閱讀
在工業上,通常將激光分成連續波(CW)、准連續(QCW)、短脈沖(Q-Switched)、超短脈沖(Mode-Locked)四類。連續波以多模連續光纖激光器為代表,占據了當前工業市場的大部分份額,廣泛應用於切割、焊接、熔覆等領域,具有光電轉換率高、加工速度快等特點。
准連續波又稱長脈沖,可產生ms~μs量級的脈沖,占空比為10%,這使得脈沖光具有比連續光高十倍以上的峰值功率,對於鑽孔、熱處理等應用來說非常有利。
短脈沖指的是ns量級的脈沖,廣泛的應用於激游標刻、鑽孔、醫療、激光測距、二次諧波的產生、軍事等領域。超短脈沖則是我們所說的超快激光,包括達到ps、fs量級的脈沖激光。
㈧ 激光加工技術都有哪些特性
激光加工技術與傳統加工技術相比具有很多優點,所以得到如此廣泛的應用。尤其適合新產品的開發:一旦產品圖紙形成後,馬上可以進行激光加工,可以在最短的時間內得到新產品的實物。
1、光點小,能量集中,熱影響區小。
2、不接觸加工工件,對工件無污染。
3、不受電磁干擾,與電子束加工相比應用更方便。
4、激光束易於聚焦、導向,便於自動化控制。
5、范圍廣泛:幾乎可對任何材料進行雕刻切割。
6、安全可靠:採用非接觸式加工,不會對材料造成機械擠壓或機械應力。
7、精確細致:加工精度可達到0.1mm。
8、效果一致:保證同一批次的加工效果幾乎完全一致。
9、高速快捷:可立即根據電腦輸出的圖樣進行高速雕刻和切割,且激光切割的速度與線切割的速度相比要快很多。
10、成本低廉:不受加工數量的限制,對於小批量加工服務,激光加工更加便宜。
11、切割縫細小:激光切割的割縫一般在0.1-0.2mm。
12、切割面光滑:激光切割的切割面無毛刺。
13、熱變形小:激光加工的激光割縫細、速度快、能量集中,因此傳到被切割材料上的熱量小,引起材料的變形也非常小。
14、適合大件產品的加工:大件產品的模具製造費用很高,激光加工不需任何模具製造,而且激光加工完全避免材料沖剪時形成的塌邊,可以大幅度地降低企業的生產成本提高產品的檔次。
15、節省材料:激光加工採用電腦編程,可以把不同形狀的產品進行材料的套裁,最大限度地提高材料的利用率,大大降低了企業材料成本。
不同激光技術又衍生出不同的激光器,例如,CO2激光器、固體激光器、光纖激光器和準分子激光器等等,它們在工業加工製作方面都起到了重要的作用。
而從地域發展情況來看,激光市場在亞太地區的長足發展是激光行業快速發展的又一大因素。中國、日本、韓國發展速度尤為突出。未來五年內,這些主要發展地區將在汽車製造、原始設備製造等方面獲得更多發展空間。
㈨ 激光加工技術都有什麼應用領域
激光加工技術的應用:
已成熟的激光加工技術包括:激光快速成形技術、激光焊接技術、激光打孔技術、激光切割技術、激光打標技術、激光去重平衡技術、激光蝕刻技術、激光微調技術、激光存儲技術、激光劃線技術、激光清洗技術、激光熱處理和表面處理技術。
激光焊接技術具有溶池凈化效應,能純凈焊縫金屬,適用於相同和不同金屬材料間的焊接。激光焊接能量密度高,對高熔點、高反射率、高導熱率和物理特性相差很大的金屬焊接特別有利。
激光切割技術可廣泛應用於金屬和非金屬材料的加工中,可大大減少加工時間,降低加工成本,提高工件質量。脈沖激光適用於金屬材料,連續激光適用於非金屬材料,後者是激光切割技術的重要應用領域。
激光打標技術是激光加工最大的應用領域之一。準分子激光打標發展起來的一項新技術,特別適用於金屬打標,可實現亞微米打標,已廣泛用於微電子工業和生物工程。
激光去重平衡技術是用激光去掉高速旋轉部件上不平衡的過重部分,使慣性軸與旋轉軸重合,以達到動平衡的過程。激光去重平衡技術具有測量和去重兩大功能,可同時進行不平衡的測量和校正,效率大大提高,在陀螺製造領域有廣闊的應用前景。對於高精度轉子,激光動平衡可成倍提高平衡精度,其質量偏心值的平衡精度可達1%或千分之幾微米。
激光蝕刻技術比傳統的化學蝕刻技術工藝簡單、可大幅度降低生產成本,可加工0.125~1微米寬的線,非常適合於超大規模集成電路的製造。
激光微調技術可對指定電阻進行自動精密微調,精度可達0.01%~0.002%,比傳統加工方法的精度和效率高、成本低。激光微調包括薄膜電阻(0.01~0.6微米厚)與厚膜電阻(20~50微米厚)的微調、電容的微調和混合集成電路的微調。
激光存儲技術是利用激光來記錄視頻、音頻、文字資料及計算機信息的一種技術,是信息化時代的支撐技術之一。
激光劃線技術是生產集成電路的關鍵技術,其劃線細、精度高(線寬為15~25微米,槽深為5~200微米),加工速度快(可達200毫米/秒),成品率可達99.5%以上。
激光清洗技術的採用可大大減少加工器件的微粒污染,提高精密器件的成品率。
激光熱、表處理技術包括:激光相變硬化技術、激光包覆技術、激光表面合金化技術、激光退火技術、激光沖擊硬化技術、激光強化電鍍技術、激光上釉技術,這些技術對改變材料的機械性能、耐熱性和耐腐蝕性等有重要作用。
激光相變硬化(即激光淬火)是激光熱處理中研究最早、最多、進展最快、應用最廣的一種新工藝,適用於大多數材料和不同形狀零件的不同部位,可提高零件的耐磨性和疲勞強度,國外一些工業部門將該技術作為保證產品質量的手段。
激光包覆技術是在工業中獲得廣泛應用的激光表面改性技術之一,具有很好的經濟性,可大大提高產品的抗腐蝕性。
激光表面合金化技術是材料表面局部改性處理的新方法,是未來應用潛力最大的表面改性技術之一,適用於航空、航天、兵器、核工業、汽車製造業中需要改善耐磨、耐腐蝕、耐高溫等性能的零件。
激光退火技術是半導體加工的一種新工藝,效果比常規熱退火好得多。激光退火後,雜質的替位率可達到98%~99%,可使多晶硅的電阻率降到普通加熱退火的1/2~1/3,還可大大提高集成電路的集成度,使電路元件間的間隔縮小到0.5微米。
激光沖擊硬化技術能改善金屬材料的機械性能,可阻止裂紋的產生和擴展,提高鋼、鋁、鈦等合金的強度和硬度,改善其抗疲勞性能。
激光強化電鍍技術可提高金屬的沉積速度,速度比無激光照射快1000倍,對微型開關、精密儀器零件、微電子器件和大規模集成電路的生產和修補具有重大義意。使用改技術可使電度層的牢固度提高昂100~1000倍。
激光上釉技術對於材料改性很有發展前途,其成本低,容易控制和復制,有利於發展新材料。激光上釉結合火焰噴塗、等離子噴塗、離子沉積等技術,在控制組織、提高表面耐磨、耐腐蝕性能方面有著廣闊的應用前景。電子材料、電磁材料和其它電氣材料經激光上釉後用於測量儀表極為理想。
㈩ 激光加工都有哪些分類特性
1、激光切割
激光切割技術廣泛應用於金屬和非金屬材料的加工中,可大大減少加工時間,降低加工成本,提高工件質量。激光切割是應用激光聚焦後產生的高功率密度能量來實現的。與傳統的板材加工方法相比,激光切割其具有高的切割質量、高的切割速度、高的柔性(可隨意切割任意形狀)、廣泛的材料適應性等優點。
(1)激光熔化切割
在激光熔化切割中,工件被局部熔化後藉助氣流把熔化的材料噴射出去。因為材料的轉移只發生在其液態情況下,所以該過程被稱作激光熔化切割。
激光光束配上高純惰性切割氣體促使熔化的材料離開割縫,而氣體本身不參與切割。
——激光熔化切割可以得到比氣化切割更高的切割速度。氣化所需的能量通常高於把材料熔化所需的能量。在激光熔化切割中,激光光束只被部分吸收。
——最大切割速度隨著激光功率的增加而增加,隨著板材厚度的增加和材料熔化溫度的增加而幾乎反比例地減小。在激光功率一定的情況下,限制因數就是割縫處的氣壓和材料的熱傳導率。
——激光熔化切割對於鐵制材料和鈦金屬可以得到無氧化切口。
——產生熔化但不到氣化的激光功率密度,對於鋼材料來說,在104W/cm²~105W/cm²之間。
(2)激光火焰切割
激光火焰切割與激光熔化切割的不同之處在於使用氧氣作為切割氣體。藉助於氧氣和加熱後的金屬之間的相互作用,產生化學反應使材料進一步加熱。對於相同厚度的結構鋼,採用該方法可得到的切割速率比熔化切割要高。
另一方面,該方法和熔化切割相比可能切口質量更差。實際上它會生成更寬的割縫、明顯的粗糙度、增加的熱影響區和更差的邊緣質量。
——激光火焰切割在加工精密模型和尖角時是不好的(有燒掉尖角的危險)。可以使用脈沖模式的激光來限制熱影響。
——所用的激光功率決定切割速度。在激光功率一定的情況下,限制因數就是氧氣的供應和材料的熱傳導率。
(3)激光氣化切割
在激光氣化切割過程中,材料在割縫處發生氣化,此情況下需要非常高的激光功率。
為了防止材料蒸氣冷凝到割縫壁上,材料的厚度一定不要大大超過激光光束的直徑。該加工因而只適合於應用在必須避免有熔化材料排除的情況下。該加工實際上只用於鐵基合金很小的使用領域。
該加工不能用於,象木材和某些陶瓷等,那些沒有熔化狀態因而不太可能讓材料蒸氣再凝結的材料。另外,這些材料通常要達到更厚的切口。
——在激光氣化切割中,最優光束聚焦取決於材料厚度和光束質量。
——激光功率和氣化熱對最優焦點位置只有一定的影響。
——所需的激光功率密度要大於108W/cm2,並且取決於材料、切割深度和光束焦點位置。
——在板材厚度一定的情況下,假設有足夠的激光功率,最大切割速度受到氣體射流速度的限制。
2、激光焊接
激光焊接是激光材料加工技術應用的重要方面之一,焊接過程屬熱傳導型,即激光輻射加熱工件表面,表面熱量通過熱傳導向內部擴散,通過控制激光脈沖的寬度、能量、峰功率和重復頻率等參數,使工件熔化,形成特定的熔池。由於其獨特的優點,已成功地應用於微、小型零件焊接中。與其它焊接技術比較,激光焊接的主要優點是:激光焊接速度快、深度大、變形小。能在室溫或特殊的條件下進行焊接,焊接設備裝置簡單。
3、激光鑽孔
隨著電子產品朝著攜帶型、小型化的方向發展,對電路板小型化提出了越來越高的需求,提高電路板小型化水平的關鍵就是越來越窄的線寬和不同層面線路之間越來越小的微型過孔和盲孔。傳統的機械鑽孔最小的尺寸僅為100μm,這顯然已不能滿足要求,代而取之的是一種新型的激光微型過孔加工方式。用CO2激光器加工在工業上可獲得過孔直徑達到在30-40μm的小孔或用UV激光加工10μm左右的小孔。在世界范圍內激光在電路板微孔製作和電路板直接成型方面的研究成為激光加工應用的熱點,利用激光製作微孔及電路板直接成型與其它加工方法相比其優越性更為突出,具有極大的商業價值。
4、激光打孔
採用脈沖激光器可進行打孔,脈沖寬度為0.1~1毫秒,特別適於打微孔和異形孔,孔徑約為0.005~1毫米。激光打孔已廣泛用於鍾表和儀表的寶石軸承、金剛石拉絲模、化纖噴絲頭等工件的加工。在造船、汽車製造等工業中,常使用百瓦至萬瓦級的連續CO2激光器對大工件進行切割,既能保證精確的空間曲線形狀,又有較高的加工效率。對小工件的切割常用中、小功率固體激光器或CO2激光器。在微電子學中,常用激光切劃矽片或切窄縫,速度快、熱影響區小。用激光可對流水線上的工件刻字或打標記,並不影響流水線的速度,刻劃出的字元可永久保持。
5、激光微調
採用中、小功率激光器除去電子元器件上的部分材料,以達到改變電參數(如電阻值、電容量和諧振頻率等)的目的。激光微調精度高、速度快,適於大規模生產。利用類似原理可以修復有缺陷的集成電路的掩模,修補集成電路存儲器以提高成品率,還可以對陀螺進行精確的動平衡調節。
6、激光熱處理
用激光照射材料,選擇適當的波長和控制照射時間、功率密度,可使材料表面熔化和再結晶,達到淬火或退火的目的。激光熱處理的優點是可以控制熱處理的深度,可以選擇和控制熱處理部位,工件變形小,可處理形狀復雜的零件和部件,可對盲孔和深孔的內壁進行處理。例如,氣缸活塞經激光熱處理後可延長壽命;用激光熱處理可恢復離子轟擊所引起損傷的硅材料。
激光加工的應用范圍還在不斷擴大,如用激光製造大規模集成電路,不用抗蝕劑,工序簡單,並能進行0.5微米以下圖案的高精度蝕刻加工,從而大大增加集成度。此外,激光蒸發、激光區域熔化和激光沉積等新工藝也在發展中。