機器人體系結構有什麼主要的體系結構
A. 機器人由那幾部分組成,各部分什麼功能
機器人由三大部分六個子系統組成。三大部分是機械部分、感測部分和控制部分。六個子系統是驅動系統、機械結構系統、感受系統、機器人一環境交換系統、人機交換系統和控制系統。
驅動系統,要使機器人運作起來,各需各個關節即每個運動自由度安置傳動裝置。這就是驅動系統。驅動系統可以是液壓傳動、氣壓傳動、電動傳動、或者把它們結合起來應用綜合系統,可以是直接驅動或者通過同步帶、鏈條、輪系、諧波齒輪等機械傳動機構進行間接傳動。
機械結構傳動,工業機器人的機械結構系統由機座、手臂、末端操作器三大部分組成,每一個大件都有若干個自由度的機械繫統。若基座不具備行走機構,則構成行走機器人;若基座不具備行走及彎腰機構,則構成單機器人臂。手臂一般由上臂、下臂和手腕組成。末端操作器是直接裝在手腕上的一個重要部件,它可以是二手指或多手指的手抓,也可以是噴漆槍、焊具等作業工具。
感受系統由內部感測器模塊和外部感測器模塊組成,用以獲得內部和外部環境狀態中有意義的信息。智能感測器的使用提高了機器人的機動性、適應性和智能化的水準。人類的感受系統對感知外部世界信息是極其靈巧的,然而,對於一些特殊的信息,感測器比人類的感受系統更有效。
機器人一環境交換系統是現代工業機器人雨外部環境中的設備互換聯系和協調的系統。工業機器人與外部設備集成為一個功能單元,如加工單元、焊接單元、裝配單元等。當然,也可以是多台機器人、多台機床或設備、多個零件存儲裝置等集成為一個去執行復雜任務的功能單元。
人工交換系統是操作人員與機器人控制並與機器人聯系的裝置,例如,計算機的標准終端,指令控制台,信息顯示板,危險信號報警器等。該系統歸納起來分為兩大類:指令給定裝置和信息顯示裝置。
控制系統的任務是根據機器人的作業指令程序以及感測器反饋回來的信號支配機器人的執行機構去完成規定的運動和功能。假如工業機器人不具備信息反饋特徵,則為開環控制系統;若具備信息反饋特徵,則為閉環控制系統。根據控制原理,控制系統可分為程序控制系統、適應性控制系統和人工智慧控制系統。根據控制運行的形式,控制系統可分為點位控制和軌跡控制。
B. 機器人有哪些主要組成部分呢
機器人(Robot)是自動執行工作的機器裝置。它既可以接受人類指揮,又可以運行預先編排的程版序,權也可以根據以人工智慧技術制定的原則綱領行動。它的任務是協助或取代人類工作的工作,例如生產業、建築業,或是危險的工作。
主要組成部分:
機器人一般由執行機構、驅動裝置、檢測裝置和控制系統和復雜機械等組成。
C. 機器人由那幾部分組成,各部分什麼功能
機器人一般由執行機構、驅動裝置、檢測裝置和控制系統和復雜機械等組成。
各個組成部分的作用:
一、執行機構
執行驅動裝置發出的系統指令;
二、驅動裝置
是驅使執行機構運動的機構,按照控制系統發出的指令信號,藉助於動力元件使機器人進行動作。
三、檢測裝置
是實時檢測機器人的運動及工作情況,根據需要反饋給控制系統,與設定信息進行比較後,對執行機構進行調整,以保證機器人的動作符合預定的要求。
四、控制系統
常用於負責系統的管理、通訊、運動學和動力學計算,並向下級微機發送指令信息;
拓展資料
能力評價
機器人能力的評價標准包括:智能,指感覺和感知,包括記憶、運算、比較、鑒別、判斷、決策、學習和邏輯推理等;機能,指變通性、通用性或空間佔有性等;物理能,指力、速度、可靠性、聯用性和壽命等。因此,可以說機器人就是具有生物功能的實際空間運行工具,可以代替人類完成一些危險或難以進行的勞作、任務等。
按照用途主要可以分為:
工業機器人、農業機器人、家用機器人、醫用機器人、服務型機器人、空間機器人、 水下機器人、軍用機器人、 排險救災機器人、 教育教學機器人、娛樂機器人等
按照功能可以分為:
操作機器人, 移動機器人, 信息 機器人, 人機機器人
按照裝置可以分為:
電力驅動機器人,液壓機器人,氣動機器人
按照受控方式可以分為:
點位控制型機器人,連續控制型機器人
D. 仿生機器人的體系結構
機器人體系結構,就是指為完成指定目標的一個或幾個機器人在信息處理和控制邏輯方面的結構方式。
基於功能來分解
基於功能分解的體系結構在人工智慧上屬於傳統的慎思式智能,在結構上體現為串列分布,在執行方式上屬於非同步執行,即按照「感知一規劃一行動」的模式進行信息處理和控制實現。以美國國家航天局和美國國家標准局所提出的NASR人MtI〕為典型代表。這種體系結構的優點是系統的功能明了.層次清晰,實現簡單。但是申行的處理方式大大延長了系統對外部事件的響應時間,環境的改變導致必須重新規劃,從而降低了執行效率。因此只適合在已知的結構化環境下完成比較復雜的工作。
基於行為來分解
基於行為分解的體系結構在人工智慧上屬於現代的反應式智能,在結構上體現為並行(包容)分布,在執行方式上屬於同步執行,即按照「感知一行動」的模式並行進行信息處理和控制。以麻省理工的R.A.Brooks所提出的行為分層的包容式體系結構(SubsumptionArchitecture) 和Arkin提出的基於MotorSc hema的結構為典型代表。其主要優點就是執行時間短、效率高、機動能力強。但是由於缺乏整體的管理,很難適應於各種情況。因此只適用於在沐淘環境下執行比較簡單的任務。
基於智能分布來分解
基於智能分布的體系結構在人工智慧上屬於最新的分布式智能,在結構上體現為分散分布,在執行上屬於協同執行,既可以單獨完成各自的局部問題求解,又能通過協作求解單個或多個全局問題。以基於多智能體的體系結構為典型代表。這種體系結構的優點是既具有「智能分布」的特點,又有統一的協調機制。但是如何在各個智能體之間合理的劃分和協調仍然需要大量的研究和實踐。該體系結構在許多大型的智能信息處理系統上有著廣泛的應用。
除以上三類主要的體系結構之外,還有一些改進的混合式體系結構,如帶反饋環節的行為分解模式、基於分布式智能的分層體系結構、基於功能分解的多智能體結構等等。但是從整體上來看,它們或是在功能模塊的靈活性和擴展性上不足,或是沒能很好的協調慎思式智能與反應式智能,或是各層次間的交流機制不夠完善。
控制體系
仿生式體系結構的思想原理
從本質上來講,慎思式智能、反應式智能以及分布式智能,都是對生物控制邏輯和推理方式的一種借鑒和仿生,但由於客觀條件的限制和需求目的的局限,它們都只是從某一個角度和方向對生物智能的一種片面的、局部的模仿。本文的仿生式體系結構就是以前述的生物控制邏輯和行為推理為基礎,充分借鑒基於慎思式智能、反應式智能和分布式智能等三種體系結構思想的優點與不足之處,針對機器人特別是未知環境下工作的移動機器人在控制體系結構方面所存在的缺點和問題,提出一種具有適應行為與進化能力的新的控制思想與理念。
借鑒分布式智能的思想,在控制體系結構中引人社會式行為控制層;
借鑒生物的自適應性思想,在控制體系結構中實現本代內的由慎思式行為層到反射式行為層的學習;
借鑒生物的自進化性思想,在控制體系結構中實現多代間的由反射式行為層向本能式行為層的進化(或退化)。
所以,仿生式體系結構共有四個行為控制層組成,即本能式行為控制層、反射式行為控制層、慎思式行為控制層和社會式行為控制層,它們並行接收來自感知層的外部和內部信息,各自作出邏輯判斷和反應,發出控制信息到末端執行層,通過競爭和協調來調節自身並適應外部環境,從而按照目標完成工作任務。
E. 機器人系統結構有哪幾部分組成 機器人基本程序結構有哪幾種簡述各個程序的特點
你說的太籠統了 是軍事上的或科研用的純機器人 還是智能家電?
F. 機器人都有哪些組成部分
機械手主要由執行機構、驅動機構和控制系統三大部分組成。手部是用來抓持工件(或工具)的部件,根據被抓持物件的形狀、尺寸、重量、材料和作業要求而有多種結構形式,如夾持型、托持型和吸附型等。運動機構,使手部完成各種轉動(擺動)、移動或復合運動來實現規定的動作,改變被抓持物件的位置和姿勢。運動機構的升降、伸縮、旋轉等獨立運動方式,稱為機械手的自由度。
為了抓取空間中任意位置和方位的物體,需有6個自由度。自由度是機械手設計的關鍵參數。自由度越多,機械手的靈活性越大,通用性越廣,其結構也越復雜。一般專用機械手有2~3個自由度。控制系統是通過對機械手每個自由度的電機的控制,來完成特定動作。同時接收感測器反饋的信息,形成穩定的閉環控制。控制系統的核心通常是由單片機或dsp等微控制晶元構成,通過對其編程實現所要功能。
一、執行機構
機械手的執行機構分為手部、手臂、軀干;
1、手部
手部安裝在手臂的前端。手臂的內孔中裝有傳動軸,可把運用傳給手腕,以轉動、伸曲手腕、開閉手指。
機械手手部的構造系模仿人的手指,分為無關節、固定關節和自由關節3種。手指的數量又可分為二指、三指、四指等,其中以二指用的最多。可根據夾持對象的形狀和大小配備多種形狀和大小的夾頭以適應操作的需要。所謂沒有手指的手部,一般都是指真空吸盤或磁性吸盤。
2、手臂
手臂的作用是引導手指准確地抓住工件,並運送到所需的位置上。為了使機械手能夠正確地工作,手臂的3個自由度都要精確地定位。
3、軀干軀干是安裝手臂、動力源和各種執行機構的支架。
二、驅動機構
機械手所用的驅動機構主要有4種:液壓驅動、氣壓驅動、電氣驅動和機械驅動。其中以液壓驅動、氣壓驅動用得最多。
1、液壓驅動式
液壓驅動式機械手通常由液動機(各種油缸、油馬達)、伺服閥、油泵、油箱等組成驅動系統,由驅動機械手執行機構進行工作。通常它的具有很大的抓舉能力(高達幾百千克以上),其特點是結構緊湊、動作平穩、耐沖擊、耐震動、防爆性好,但液壓元件要求有較高的製造精度和密封性能,否則漏油將污染環境。
2、氣壓驅動式
其驅動系統通常由氣缸、氣閥、氣罐和空壓機組成,其特點是氣源方便、動作迅速、結構簡單、造價較低、維修方便。但難以進行速度控制,氣壓不可太高,故抓舉能力較低。
3、電氣驅動式電力驅動是機械手使用得最多的一種驅動方式。其特點是電源方便,響應快,驅動力較大(關節型的持重已達400kg),信號檢測、傳動、處理方便,並可採用多種靈活的控制方案。驅動電機一般採用步進電機,直流伺服電機(AC)為主要的驅動方式。由於電機速度高,通常須採用減速機構(如諧波傳動、RV擺線針輪傳動、齒輪傳動、螺旋傳動和多桿機構等)。有些機械手已開始採用無減速機構的大轉矩、低轉速電機進行直接驅動(DD)這既可使機構簡化,又可提高控制精度。
4、機械驅動式
機械驅動只用於動作固定的場合。一般用凸輪連桿機構來實現規定的動作。其特點是動作確實可靠,工作速度高,成本低,但不易於調整。其他還有採用混合驅動,即液-氣或電-液混合驅動。
三、控制系統
機械手控制的要素包括工作順序、到達位置、動作時間、運動速度、加減速度等。機械手的控制分為點位控制和連續軌跡控制兩種。
控制系統可根據動作的要求,設計採用數字順序控制。它首先要編製程序加以存儲,然後再根據規定的程序,控制機械手進行工作程序的存儲方式有分離存儲和集中存儲兩種。分離存儲是將各種控制因素的信息分別存儲於兩種以上的存儲裝置中,如順序信息存儲於插銷板、凸輪轉鼓、穿孔帶內;位置信息存儲於時間繼電器、定速回轉鼓等;集中存儲是將各種控制因素的信息全部存儲於一種存儲裝置內,如磁帶、磁鼓等。這種方式使用於順序、位置、時間、速度等必須同時控制的場合,即連續控制的情況下使用。
其中插銷板使用於需要迅速改變程序的場合。換一種程序只需抽換一種插銷板限可,而同一插件又可以反復使用;穿孔帶容納的程序長度可不受限制,但如果發生錯誤時就要全部更換;穿孔卡的信息容量有限,但便於更換、保存,可重復使用;磁蕊和磁鼓僅適用於存儲容量較大的場合。至於選擇哪一種控制元件,則根據動作的復雜程序和精確程序來確定。對動作復雜的機械手,採用求教再現型控制系統。更復雜的機械手採用數字控制系統、小型計算機或微處理機控制的系統。控制系統以插銷板用的最多,其次是凸輪轉鼓。它裝有許多凸輪,每一個凸輪分配給一個運動軸,轉鼓運動一周便完成一個循環。
G. CIMS體系結構有哪些
CIMS體系結構:
CIMS體系結構是用來描述研究對象整個系統的各個部分和各個方面的相互關系和層次結構,從大系統理論角度研究,將整個研究對象分為幾個子系統,各個子系統相對獨立自治、分布存在、並發運行和驅動等。我們可以從功能結構和邏輯結構來認識CIMS體系結構。
第一層,生產/製造系統:這一層面向生產過程,包括了柔性製造單元FMS、裝配設備、工業機器人及其他生產製造自動化技術,這一層以物流為中心,完成生產、加工、裝配、包裝等任務。
第二層,硬事務處理系統:這一層是生產/製造監控系統,通過計算機網路對第一層的設備進行綜合控制與操作,實現對生產製造的監控。包含狹義的CAM、CAQ及CAT等。
第三層,技術設計系統:這一層包含CAD(計算機輔助設計)、CAPP(計算機輔助工藝),為生產製造系統產生信息。CAD用於產品設計、開發,它提供的是如何做的信息,而CAPP是依據CAD提供的信息指導如合作。
第四層,軟事務處理系統:這一層主要通過計算機網路實時地處理各種軟事務,譬如,財務、供銷、售後服務等方面的管理,實現電子化記賬。
第五層,信息服務系統:以狹義的MIS為主,主要對前面各層的信息進行收集、存儲、加工、傳輸、使用、查詢,為各級管理者與下層提供數據。
第六層,決策管理系統:這一層是企業經營管理規劃的決策層,主要有MRP-II(製造資源計劃)、ERP(企業資源計劃)、決策支持系統DSS、專家系統ES、系統模擬系統等組成。他根據企業總體路線、企業內部條件、市場信息等因素,產生生產經營活動的計劃與方案、各種資源的需求計劃,包括人、物、資金的需求計劃。
CIMS邏輯結構不僅體現了信息的傳遞與交換,更能反映出人在CIMS系統中的重要作用。因此可以說人為因素是實施CIMS能否取得實際成效的關鍵。
H. 物流倉庫管理系統 機器人 採用什麼體系結構風格
傳統的倉儲管理系統概念中忽略了管理經驗和自動識別硬體的缺失。
以大科技倉儲管理系統中的軟體指的是支持整個系統運作的軟體部分,包括收貨處理、上架管理、揀貨作業、月台管理、補貨管理、庫內作業、越庫操作、循環盤點、RF操作、加工管理、矩陣式收費等。
倉儲在企業的整個供應鏈中起著至關重要的作用,如果不能保證正確的進貨和庫存控制及發貨,將會導致管理費用的增加,服務質量難以得到保證,從而影響企業的競爭力。傳統簡單、靜態的倉儲管理已無法保證企業各種資源的高效利用。如今的倉庫作業和庫存控製作業已十分復雜化多樣化,僅靠人工記憶和手工錄入,不但費時費力,而且容易出錯,給企業帶來巨大損失。
I. 機器人的基本組成部分有哪些
機器人目前是典型的機電一體化產品,一般由機械本體、控制系統、感測器、驅動器和輸入/輸出系統介面等五部分組成。為對本體進行精確控制,感測器應提供機器人本體或其所處環境的信息,控制系統依據控製程序產生指令信號,通過控制各關節運動坐標的驅動器,使各臂桿端點按照要求的軌跡、速度和加速度,以一定的姿態達到空間指定的位置。驅動器將控制系統輸出的信號變換成大功率的信號,以驅動執行器工作。
1.機械本體
機械本體,是機器人賴以完成作業任務的執行機構,一般是一台機械手,也稱操作器、或操作手,可以在確定的環境中執行控制系統指定的操作。典型工業機器人的機械本體一般由手部(末端執行器)、腕部、臂部、腰部和基座構成。機械手多採用關節式機械結構,一般具有6個自由度,其中3個用來確定末端執行器的位置,另外3個則用來確定末端執行裝置的方向(姿勢)。機械臂上的末端執行裝置可以根據操作需要換成焊槍、吸盤、扳手等作業工具。
2.控制系統
控制系統是機器人的指揮中樞,相當於人的大腦功能,負責對作業指令信息、內外環境信息進行處理,並依據預定的本體模型、環境模型和控製程序做出決策,產生相應的控制信號,通過驅動器驅動執行機構的各個關節按所需的順序、沿確定的位置或軌跡運動,完成特定的作業。從控制系統的構成看,有開環控制系統和閉環控制系統之分;從控制方式看有程序控制系統、適應性控制系統和智能控制系統之分。
3.驅動器
驅動器是機器人的動力系統,相當於人的心血管系統,一般由驅動裝置和傳動機構兩部分組成。因驅動方式的不同,驅動裝置可以分成電動、液動和氣動三種類型。驅動裝置中的電動機、液壓缸、氣缸可以與操作機直接相連,也可以通過傳動機構與執行機構相連。傳動機構通常有齒輪傳動、鏈傳動、諧波齒輪傳動、螺旋傳動、帶傳動等幾種類型。
4.感測器
感測器是機器人的感測系統,相當於人的感覺器官,是機器人系統的重要組成部分,包括內部感測器和外部感測器兩大類。內部感測器主要用來檢測機器人本身的狀態,為機器人的運動控制提供必要的本體狀態信息,如位置感測器、速度感測器等。外部感測器則用來感知機器人所處的工作環境或工作狀況信息,又可分成環境感測器和末端執行器感測器兩種類型.
前者用於識別物體和檢測物體與機器人的距離等信息,後者安裝在末端執行器上,檢測處理精巧作業的感覺信息。常見的外部感測器有力覺感測器、觸覺感測器、接近覺感測器、視覺感測器等。
5. 輸入/輸出系統介面:為了與周邊系統及相應操作進行聯系與應答,還應有各種通訊介面和人機通信裝置。