焊接殘余應力在abaqus是如何設置的
① 焊接殘余應力和焊接殘余變形是如何產生的
你好,簡單的通俗的講就是沒有受熱的部分限制了受熱部分的延伸,從而引發的變形與應力,望採納。
② 焊接殘余應力是怎麼產生的焊接應力如何消除
焊件在焊接過程中,熱應力、相變應力、加工應力等超過屈服極限(Yield strength),以致冷卻後焊件中留有未能消除的應力。
這樣,焊接冷卻後的殘余在焊件中的宏觀應力稱為殘余焊接應力。焊接過程的不均勻溫度場以及由它引起的局部塑性變形和比容不同的組織是產生焊接應力和變形的根本原因。
③ Abaqus中切削後怎樣設置卸載和冷卻,並輸出殘余應力
切削後,去除受力邊界的過程就是卸載,將溫度邊界降低的過程就是冷卻,如果沒有其他的受力應力的結果就是殘余應力了
④ ABAQUS 如何施加殘余應力
abaqus自帶有地應力平衡功能,用GEOStatic就能完成,但是比較多的做法是利用初始應力方法實現的,網上有很多具體做法,如:
1.先施加重力荷載的作用,可以在cae中實現;2.在inp文件中的output request中寫上*el prints,這樣就會將施加重力荷載後的應力輸出到*.dat文件中了; 3.在*.dat文件中,將單元應力的序號及單元的應力拷出,例如ELEMENT T FOOT- S11 S22 S33 S12 單獨存為一個*.dat文件,4.用excel打開該文件,將其中的1所在的列去掉,在每個單元號前面加上其instance. ,即單元編號變為: instance名稱.序號 ;注意不同的instance和part要都按照其所在的單元從小到大編號,而不是按照他們在整體單元編號來編號!5.接下來就在excel把該文件另存為*.csv格式的文件(即帶有逗號分隔符的格式),6.最後在inp文件的step之前寫上*initial conditions,type=stress,input=文件名.csv
有人提出如下問題:
在這里我有兩個問題,麻煩了解的告訴我一下:
1.關於第二步分析步選項,選擇Static,General和Geostatic,兩者都可以計算出重力下的應力,具體區別在哪?或者說選Static不對的原因?
2.我發現缺少第三步照樣可以算出來,這是為什麼?換句話第三步的目的和必要性是什麼?
我的回答如下:
地應力是只有應力沒有位移的,採用靜力計算會產生位移,利用地應力平衡只需要應力不差生位移。
第三步驟,主要是輸出的問題,有沒有都沒有關系
是沒有差別的,兩者應該是一樣的。Geostatic 那個本來就是地應力平衡的,可能是後續的分析步有限制,所以才用了初始應力的方法吧
abaqus6.12以及以上版本可以在load裡面有個預定義場,選擇在initial步時設置initial stress。當然在具體實施中可能會遇到一些無法施加的問題,那樣就要針對具體問題進行相應改動。若abaqus版本較低,則在inp文件中增加*initial condition,type=stress,input=XXX.csv命令行,具體實施參見幫助文檔或者去simwe論壇查看。
⑤ 焊接殘余應力對結構的影響有哪些
你好,焊接構來件由於存源在高的拉伸殘余應力,且焊縫部位存在熱影響區、焊趾缺陷、接頭應力集中,形成構件上組織和力學的薄弱部位,有可能導致構件運行時的變形、早期開裂、應力腐蝕、疲勞斷裂和脆性斷裂。所以,在可能的情況下採用適合的時效工藝以改善組織性能及消除殘余應力,將可有效地提高構件的穩定性和安全性及使用壽命。 華雲機電生產的振動時效設備對構件施加交變應力,與構件上的殘余應力疊加達到材料的屈服應力,發生局部的宏觀和微觀塑性變形;這種塑性變形往往首先發生在殘余應力最大處和構件的應力集中點,使這里的殘余應力得以釋放,達到降低和均化殘余應力的作用。
⑥ 焊接殘余應力怎麼分析,有哪些方面
焊件在焊接過程中,熱應力、相變應力、加工應力等超過屈服極限(Yield strength),以致冷卻後焊件中留有未能消除的應力。 這樣,焊接冷卻後的殘余在焊件中的宏觀應力稱為殘余焊接應力。焊接過程的不均勻溫度場以及由它引起的局部塑性變形和比容不同的組織是產生焊接應力和變形的根本原因。 焊接殘余應力,是焊接工程研究領域的重點問題。涉及焊接的各種工程應用中,都十分關注殘余應力的影響。例如,在土木工程領域,對於鋼結構焊接連接,殘余應力對結構的疲勞性能,穩定承載力等均有影響。 焊接應力有暫時應力與殘余應力之分。暫時應力只在焊接過程中一定的溫度條件 下存在,當焊件冷卻至常溫時,暫時應力即行消失。焊接殘余應力是指焊件冷卻後殘留在焊件內的應力。從結構的使用要求來看,焊接殘余應力有著重要意義。殘余應力按其方向可分為縱向、橫向和沿厚度方向的應力三種。 1.縱向焊接殘余應力 焊接過程一個不均勻加熱和冷卻的過程。在施焊時,焊件上產生不均勻的溫度場, 焊縫及附近溫度最高,可達1600℃以上,其鄰近區域則溫度急劇下降。不均勻的溫度場將產生不均勻的膨脹。焊縫及附近高溫處的鋼材膨脹最大,由於受到兩側溫度較低,膨脹較小的鋼材的限制,產生了熱狀態塑性壓縮。焊縫冷壓時,被塑性壓縮的焊縫區趨向於縮得比原始長度稍短,這種縮短變形受到焊縫兩側鋼材的限制,使焊縫區產生縱向拉應力。在低碳鋼和低合金鋼中,這種拉應力以常達到鋼材的屈服強度。焊接殘余應力是荷載未作用時的內應力,因此會在焊件內部自相平衡,這就必然在距焊縫稍遠區域應力。用三塊剪切下料的鋼板焊成的工字形截面,縱向焊接殘余應力分布。 2.橫向殘余應力 橫向殘余應力產生的原因有:①由於焊縫縱向收縮,兩塊鋼板趨向於外彎成弓形的趨勢,但在實際上焊縫將兩塊鋼板連成整體,不能分開,於是在焊縫中部將產生橫向拉應力,而在兩端產生橫向壓應力。②焊縫在施焊過程中,先後冷卻的時間不同,先焊的焊縫已經凝固,且具有一定的強度,會阻止後焊焊縫在橫向的自由膨脹,使其產生橫向的塑性壓縮變形。當焊縫冷卻時,後焊焊縫的收縮受到已凝固焊縫的限制而產生橫向拉應力,同時在先焊部分的焊縫內產生橫向壓應力。橫向收縮引起的橫向應力與施焊方向及先後次序有關,焊縫的橫向殘余應力是上述兩種原因產生的應力的合成。 3.沿焊縫厚度方向的殘余應力 在厚鋼板的連接中,焊縫需要多層施焊。因此,除有縱向和橫向殘余應力之外,沿厚度方向還存在著殘余應力。這三種應力可能形成比較嚴重的同號三軸應力;會大大降低結構連接的塑性。這就是焊接結構易發生脆性破壞的原因之一。 以上分析是焊件在無外加約束情況下的焊接殘余應力。若焊件施焊時處在約束狀態,如採用強大夾具或焊件本身剛度較大等,焊件將因不能自由伸縮變形而產生更大的焊邊殘余應力,且隨約束程度增加而增大。 如果想要解決殘余應力和焊接變形的問題最好的辦法是振動時效啊,沒有 熱時效那麼麻煩而且還能消除95%以上的殘余應力,華雲家的就不錯,你可以看一下。。。
⑦ 焊接殘余應力對構件的危害及消除方法
焊接殘余應力對構件的危害是
1、對結構剛度的影響 當外載產生的應力與結構中某區域的殘余應力疊加之和達到屈服點時,這一區域的材料就會產生局部塑性變形,喪失了進一步承受外載的能力,造成結構的有效截面積減小,結構的剛度也隨之降低。
2、對受壓桿件穩定性的影響 當外載引起的壓應力與殘余應力中的壓應力疊加之和達到屈服點口。,這一部分截面就喪失進一步承受外載的能力。這就削弱了構件的有效截面積,並改變了有效截面積的分布,降低了受壓桿件的穩定性。
3、對靜載強度的影響 沒有嚴重應力集中的焊接結構,只要材料具有一定的塑性變形能力,殘余應力不影響結構的靜載強度。反之,如材料處於脆性狀態,則拉伸殘余應力和外載應力疊加有可能使局部區域的應力首先達到斷裂強度,導致結構早期破壞。
4、對疲勞強度的影響 殘余應力的存在使變載荷的應力循環發生偏移。這種偏移,只改變其平均值,不改變其幅值。結構的疲勞強度與應力循環的特徵有關,當應力循環的平均值增加時,其極限幅值就降低,反之則提高。因此,如應力集中處存在著拉伸殘余應力,疲勞強度將降低。
5、對焊件加工精度和尺寸穩定性的影響 機械加工把一部分材料從焊件上切除時,此處的殘余應力也被釋放。殘余應力原來的平衡狀態被破壞,焊件發生變形,加工精度受影響。
6、對應力腐蝕開裂的影響 應力腐蝕開裂是拉伸殘余應力和化學腐蝕共同作用下產生裂紋的現象,在一定材料和介質的組合下發生。應力腐蝕開裂所需的時間與殘余應力大小有關,拉伸殘余應力越大,應力腐蝕開裂的時間越短。
焊接殘余應力消除方法有:
利用錘擊焊縫區來控制焊接殘余應力
焊後用小錘輕敲焊縫及其鄰近區域,使金屬展開,能有效地減少焊接殘余應力。
利用預熱法來控制焊接殘余應力
構件本體上溫差越大,焊接殘余應力也越大。焊前對構件進行預熱,能減小溫差和減慢冷卻速度,兩者均能減小焊接殘余應力。
利用「加熱減應區法」來控制焊接殘余應力
焊接時,加熱那些阻礙焊接區自由伸縮的部位,使之與焊接區同時膨脹和同時收縮,就能減小焊接應力,這種方法稱為「加熱減應區法」,加熱的部位就稱之為「減應區」。
利用高溫回火來消除焊接殘余應力
由於構件殘余應力的最大值通常可達到該種材料的屈服點,而金屬在高溫下屈服點將降低。所以將構件的溫度升高至某一定數值時,應力的最大值也應該減少到該溫度下的屈服點數值。如果要完全消除結構中的殘余應力,則必須將構件加熱到其屈服點等於零的溫度,所以一般所取的回火溫度接近於這個溫度。
1、整體高溫回火 將整個構件放在爐中加熱到一定溫度,然後保溫一段時間再冷卻。通過整體高溫回火可以將構件中80%~90%的殘余應力消除掉,這是生產中應用最廣泛、效果最好的一種消除殘余應力的方法。
回火時間隨構件厚度而定,鋼按每毫米壁厚l~2min計算,但不宜低於30min,不必高於3h,因為殘余應力的消除效果隨時間迅速降低,所以過長的處理時間是不必要的。
2、局部高溫回火 只對焊縫及其局部區域進行加熱消除殘余應力。消除應力的效果不如整體高溫回火,此方法設備簡單,常用於比較簡單的、剛度較小的構件,如長筒形容器、管道接頭、長構件的對接接頭等焊接殘余應力的消除。
利用溫差拉伸法來消除焊接殘余應力
溫差拉伸法消除焊接殘余應力的基本原理與機械拉伸法相同,主要差別是利用局部加熱的溫差來拉伸焊縫區。
溫差拉伸法是在焊縫兩側各用一個寬度適當的氧乙炔焰焊炬進行加熱,在焊炬後面一定距離,用一根帶有排孔的水管進行噴水冷卻。氧乙炔焰和噴水管以相同速度向前移動。這就形成了一個兩側溫度高(峰值約為200℃)、焊接區溫度低(約為100℃)的溫度差。兩側金屬受熱膨脹對溫度較低的區域進行拉伸,這樣就可消除部分殘余應力。據測定,消除殘余應力的效果可達50%~70%。
利用振動法來消除焊接殘余應力
構件承受變載荷應力達到一定數值,經過多次循環載入後,結構中的殘余應力逐漸降低,即利用振動的方法可以消除部分焊接殘余應力。一種大型焊件使用振動器消除應力的裝置。
振動法的優點是設備簡單、成本低,時間比較短,沒有高溫回火時的氧化問題,已在生產上得到一定應用。
爆炸法
通過布置在焊縫附近的炸葯帶,引爆產生的沖擊波與焊接殘余應力的交互作用,使金屬產生適量的塑性變形,從而消除焊接殘余應力的方法,叫焊接殘余應力爆炸法。
⑧ 什麼是焊接殘余應力
焊件抄焊後的熱應力超過襲彈性極限,以致冷卻後焊件中留有未能消除的應力。焊接溫度場消失後的應力稱為殘余焊接應力焊接過程的不均勻溫度場以及由它引起的局部塑性變形和比容不同的組織是產生焊接應力和變形的根本原因。
⑨ 焊接殘余應力是怎麼產生的,焊接應力如何消除
焊接殘余應力產生條件:
焊件在焊接過程中,熱應力、相變應力、加工應力等超過屈服極限(Yield strength),以致冷卻後焊件中留有未能消除的應力。 這樣,焊接冷卻後的殘余在焊件中的宏觀應力稱為殘余焊接應力。焊接過程的不均勻溫度場以及由它引起的局部塑性變形和比容不同的組織是產生焊接應力和變形的根本原因。
焊接殘余應力消除方法:
1、利用錘擊焊縫區來控制焊接殘余應力,焊後用小錘輕敲焊縫及其鄰近區域,使金屬展開,能有效地減少焊接殘余應力。
2、利用預熱法來控制焊接殘余應力
構件本體上溫差越大,焊接殘余應力也越大。焊前對構件進行預熱,能減小溫差和減慢冷卻速度,兩者均能減小焊接殘余應力。
3、利用「加熱減應區法」來控制焊接殘余應力
焊接時,加熱那些阻礙焊接區自由伸縮的部位,使之與焊接區同時膨脹和同時收縮,就能減小焊接應力,這種方法稱為「加熱減應區法」,加熱的部位就稱之為「減應區」。
4、利用高溫回火來消除焊接殘余應力
由於構件殘余應力的最大值通常可達到該種材料的屈服點,而金屬在高溫下屈服點將降低。所以將構件的溫度升高至某一定數值時,應力的最大值也應該減少到該溫度下的屈服點數值。如果要完全消除結構中的殘余應力,則必須將構件加熱到其屈服點等於零的溫度,所以一般所取的回火溫度接近於這個溫度。
4、整體高溫回火 將整個構件放在爐中加熱到一定溫度,然後保溫一段時間再冷卻。通過整體高溫回火可以將構件中80%~90%的殘余應力消除掉,這是生產中應用最廣泛、效果最好的一種消除殘余應力的方法。回火時間隨構件厚度而定,鋼按每毫米壁厚l~2min計算,但不宜低於30min,不必高於3h,因為殘余應力的消除效果隨時間迅速降低,所以過長的處理時間是不必要的。
5、局部高溫回火 只對焊縫及其局部區域進行加熱消除殘余應力。消除應力的效果不如整體高溫回火,此方法設備簡單,常用於比較簡單的、剛度較小的構件,如長筒形容器、管道接頭、長構件的對接接頭等焊接殘余應力的消除。
6、利用溫差拉伸法來消除焊接殘余應力
溫差拉伸法消除焊接殘余應力的基本原理與機械拉伸法相同,主要差別是利用局部加熱的溫差來拉伸焊縫區。
溫差拉伸法是在焊縫兩側各用一個寬度適當的氧乙炔焰焊炬進行加熱,在焊炬後面一定距離,用一根帶有排孔的水管進行噴水冷卻。氧乙炔焰和噴水管以相同速度向前移動。這就形成了一個兩側溫度高(峰值約為200℃)、焊接區溫度低(約為100℃)的溫度差。兩側金屬受熱膨脹對溫度較低的區域進行拉伸,這樣就可消除部分殘余應力。據測定,消除殘余應力的效果可達50%~70%。
7、利用振動法來消除焊接殘余應力
構件承受變載荷應力達到一定數值,經過多次循環載入後,結構中的殘余應力逐漸降低,即利用振動的方法可以消除部分焊接殘余應力。一種大型焊件使用振動器消除應力的裝置。
⑩ 焊接殘余應力的計算機模擬研究方法
近年來,計算機數值模擬技術逐漸應用於焊接結構殘余應力的研究中。
焊接殘余應力回應力的計算機模擬采答用熱力耦合的彈塑性有限元模型,採用熱分析與靜力分析耦合的方法,計算得到了包括電弧焊、激光焊、電子束焊、激光焊、攪拌摩擦焊、線性摩擦焊、慣性摩擦焊等高新焊接技術在內的幾乎所有焊接技術得到的焊接結構中的殘余應力分布。模擬結果與實驗測得值吻合良好。
計算機模擬方法正在逐步推廣成為工業界廣泛採用的一種不可或缺的數字化製造技術。
多家國內大學與研究單位,如清華大學(先進成型製造技術教育部重點實驗室),西北工業大學(摩擦焊陝西省重點實驗室)等,都在焊接殘余應力的模擬與模擬技術開發與應用方面有著豐富的研究經驗。