焊接產生的叫什麼
A. 焊接中產生夾渣的原因是什麼
1、打底焊後清根不徹底,致使在快速熱焊時,未能使根部熔渣完全溢出。
2、打底焊清版根的方法不當,使權根部焊道兩側溝槽過深,呈現「W」狀。在快速熱焊時,流到深槽的熔渣來不及溢出而形成夾渣。
3、在6點鍾位置收弧過快也易產生夾渣。
防止措施:打底焊後使用砂輪清渣,清根要徹底,每個接頭點一定要打平。清根時要將根焊道清成「U」形槽,避免清成「W」形槽。6點鍾收弧時要將熔池填滿後,再運弧到成形的焊縫上進行收弧,要採用平甩法熄弧。
(1)焊接產生的叫什麼擴展閱讀
夾渣屬於固體夾雜缺陷的一種,是夾渣殘留在焊縫中的熔渣,根據其成形的情況,可分為線狀的、孤立的以及其他形式。
一般與氣孔相似,而外形更不規則,有時還會有針形顯微夾渣,夾渣的形狀是多種多樣的。夾渣對焊縫的危害性和氣孔相似,夾渣會降低焊縫的塑性和韌性;其尖角往往造成應力集中。
特別是在空淬傾向大的焊縫中,尖角頂點常形成裂縫。尖角所引起的應力集中比氣孔更嚴重,甚至與裂紋相似。
B. 焊接的三要素是什麼
1、焊接間隙
焊接間隙也叫對口間隙,是焊接件對口處兩個焊件之間的間隙。焊接間隙直接關系焊口質量。
焊接間隙過小時焊縫不容易焊透;焊接間隙過大時增加焊接的難度,填充量大影響焊接進度,增大焊接應力,容易產生焊接變形。
2、鈍邊尺寸
鈍邊尺寸也叫坡口尺寸,對於U形坡口還包括圓弧R的尺寸。
鈍邊過大或過小都會對於焊接質量造成影響,鈍邊過小容易造成燒穿,鈍邊過大容易造成未焊透。如果接頭兩側的鈍邊同時過大或過小還比較容易處理,可以通過調節電流來控制熔深。
如果由於一側鈍邊大,另一側鈍邊小,如果選用小電流,就會未焊透。如果選用大電流,就會燒穿,因此,這種情況尤其在單面焊雙面成型的焊接工作中應引起足夠的重視。
U形坡口是一種節約焊材的坡口形式,但是圓弧R的尺寸必須保正焊條或焊絲能夠容易地伸到坡口底部進行焊接。
3、坡口角度
坡口角度過大或過小都會對焊接質量產生不同程度的影響。從表面上看,坡口角度過大隻是會造成填充金屬增多,焊接時間變長,影響經濟效益,但是焊接後便會顯露出另一個令人頭疼的問題:增大的焊接變形。應盡量避免此類問題的發生。
如果一旦發生這類問題,可以有以下解決方案:如果板的尺寸足夠,可以重新割坡口到正確尺寸;組裝接頭前進行堆焊,使坡口尺寸正確;
坡口角度過小。坡口角度過小所造成的最直接的問題是熔深不足,容易造成夾渣。另外熔深不足在某些情況下會影響焊縫有效厚度的大小,從而降低焊縫強度,所以必須引起重視。
坡口角度過小另一個很隱蔽的問題是容易產生裂紋,應避免此類問題的發生。對於坡口角度過小的問題,可以有以下解決方案:重新割或打磨坡口到正確尺寸;在組裝時,適當增大坡口根部間隙;改變根部焊道焊接方法。
(2)焊接產生的叫什麼擴展閱讀
焊接通過下列三種途徑達成接合的目的:
1、熔焊——加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固後便接合,必要時可加入熔填物輔助,它是適合各種金屬和合金的焊接加工,不需壓力。
2、壓焊——焊接過程必須對焊件施加壓力,屬於各種金屬材料和部分金屬材料的加工。
3、釺焊——採用比母材熔點低的金屬材料做釺料,利用液態釺料潤濕母材,填充接頭間隙,並與母材互相擴散實現鏈接焊件。適合於各種材料的焊接加工,也適合於不同金屬或異類材料的焊接加工。
C. fcaw是什麼焊接方法
FCAW是Fluxed-coredarcwelding的縮寫,中文譯為:葯芯焊絲電弧焊。它是使用葯芯焊絲作為焊接材料的一種熔化極氣體保護焊或自保護焊法,在我國管道施工中用於全位置半自動下向焊焊接工藝。
1992年,美國林肯公司向管道局推出半自動FCAW下向焊接工藝的同時,重點推出了兩種焊接設備組合:林肯DC—400弧焊電源+LN23P送絲機和SAE-400柴油發電機式弧焊電源+LN23P送絲機。1995年在突尼西亞環城管線使用半自動FCAW下向焊接工藝成功後,1996年在庫鄯線平原地段進行了推廣。蘇丹工程、利比亞工程、澀寧蘭工程、蘭成渝工程、陝京二線工程施工中,管線熱焊、填充、蓋面焊基本上採用了該焊接工藝。西氣東輸工程2500公里左右也基本上採用此工藝,餘下的1500公里採用自動焊接完成。近10年的工程實踐證明,半自動FCAW下向焊接工藝,在大口徑長輸管道施工中得到了大力推廣和使用。
與半自動CO2氣體保護下向焊接工藝相比,半自動FCAW下向焊接具有工藝性能優良、電弧穩定、生產效率高、飛濺小、焊縫成型美觀、鋼種與空間位置適應性好、抗風能力強等優點。與傳統的下向焊條電弧焊工藝相比,它把熱焊、填充焊、蓋面焊焊口一次合格率平均提高到10%左右,生產率提高1.25至1.5倍左右。與自動焊相比,它具有設備投資少、成本回收快、綜合成本低等優點。焊工培訓時間短,易掌握。在十幾年的工程施工中焊接質量穩定,經過X射線拍片檢查,焊口一次合格率平均在95%至98%左右。採用半自動FCAW下向焊接工藝在管道施工中達到了國內外工程業主提出的「四高」標准,完全適合於各種管徑管道全位置下向焊接工藝要求。所以,備受業主、監理、施工單位的青睞。
半自動FCAW下向焊接的電弧擴散角較大,造成了電弧電壓徑向能量梯度大,幅度減小,分布趨於平緩,熔深較淺,所以不太適於深層熔透要求場合下的焊接。但是,其焊縫成型系數大、飛濺率低、焊縫平緩圓滑,適用於管道下向焊接工藝。
在半自動FCAW下向焊接工藝中,有7個主要工藝參數是在焊接中最受關注的問題。這7個工藝參數分別是電弧電壓、電流、送絲速度、焊絲角度、焊接速度、推力電流和焊絲的桿伸長度。在7種工藝參數完全匹配時,才能實現穩定的焊接過程,才能實現小飛濺、焊縫成型好、生產效率高的優越性。
在焊接過程中,電弧電壓是自保護的重要參數之一。在管道全位置半自動FCAW下向焊工藝中,電弧電壓一般控制在18~22伏之間。如果電壓過高,則熔渣太稀,不易存留在焊縫表面,失去其焊縫金屬表面保護作用,產生氣孔。電壓過低,則電弧過程失穩、易頂絲,且焊道鼓、飛濺增大,熱焊、填充焊時出現夾角,產生夾渣缺陷。
推力電流在焊接過程中往往容易被忽視,因為在焊接工藝參數中,它的變化反應最不明顯,但推力電流在焊接中卻起著很大作用。因為熔滴過渡會頻繁斷路不同的焊條直徑、焊條牌號、焊絲直徑、焊絲牌號、焊縫空間位置及不同的操作者都會對推力電流有不同的要求。推力電流越小,電弧越軟,但飛濺小,適合於小電流下手焊操作。推力電流越大,電弧越硬,但飛濺稍大,適用於全位置焊接,並利於電弧連續穩定。
焊絲的桿伸長度,即焊絲在導電嘴與工件產生的電弧之間伸出的長度。桿伸長度越長,則電弧電壓越低;桿伸長度越短,則電弧電壓越高。一般桿伸長度應控制在19~25.4毫米之間為宜。如果桿伸長度小於19毫米,則因電弧電壓增高,焊絲鋼皮電阻熱增大,焊絲因電阻熱增加變化導致送絲在導電嘴受阻,減緩送絲速度,又因電阻熱增高,焊絲葯芯顆粒細化,也能造成自保護壓力下降和熔池冷凝快產生氣孔。如果桿伸長度大於25.4毫米,電弧電壓隨之降低,常伴隨著焊絲爆斷,出現頂絲、穿絲現象。一般焊絲桿伸長度小於19毫米,常常發生在平焊和立焊位置;桿伸長度大於25.4毫米,則易發生在仰焊位置。焊絲的桿伸長度控制,在焊接過程中對確保焊接質量至關重要。
半自動FCAW下向焊接在不同的工藝參數下操作,大致會產生三種熔滴過渡現象。即短路過渡、大顆粒過渡、細顆粒過渡。在管道全位置下向焊接工藝中,通用的是綜合工藝參數。這個參數適用於立焊要求,平焊相對較低,仰焊相對較高。在小參數下,如在電弧電壓低、推力電流小、送絲速度快等不匹配的參數下操作,為短路過渡。由於電壓較低、弧長縮短,熔滴還未縮頸便與熔池金屬接觸,則在表面張力、重力作用下完成過渡、爆炸和再引弧產生沖擊力,使熔池向斜上方拋出。其中較大尺寸顆粒會落入熔池,較小顆粒的液態金屬則飛出焊接區,形成飛濺,在中等參數下,產生大顆粒過渡。由於電壓升高,弧長變長,熔滴在焊絲端部長得較大。當熔滴向熔池方向運動大於其運動方向的阻力時,熔滴脫離焊絲端部,一般沿著稍偏離焊絲軸線的路徑,自由落入熔池。在強參數下,即大電流、高電壓焊接時,會發生細顆粒過渡。這時,熔滴尺寸均勻,過渡路徑為非軸向過渡,電弧弧根直徑大於焊絲端部熔滴直徑,弧根覆蓋在熔滴的下表面。此時,焊絲端部與熔滴之間的縮頸加快、熔滴尺寸減小,沿非軸向路徑呈細顆粒狀滴落過渡到熔池中。細顆粒過渡易造成焊縫增寬、焊縫薄、蓋面焊咬邊、熔池因失去自保護產生氣孔或金屬冷凝速度過快、焊縫中的氫氣來不及排出產生氣孔等現象。
半自動FCAW焊接工藝是一門新興的焊接方法,雖然操作簡單、易學,但想把這門工藝學深、學透、學精還需要下一番工夫。
參考資料:
1.
半自動FCAW下向焊接工藝在管道施工中的應用
D. 焊接是怎樣形成的其工作原理是什麼
焊接:也稱作熔接、鎔接,是一種以加熱、高溫或者高壓的方式接合金屬或其他熱塑性材料如塑料的製造工藝及技術。 焊接通過下列三種途徑達成接合的目的:
1、熔焊——加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固後便接合,必要時可加入熔填物輔助;
2、壓焊——焊接過程必須對焊件施加壓力
3、釺焊——採用比母材熔點低的金屬材料做釺料,利用液態釺料潤濕母材,填充間隙,並與母材互相擴散實現鏈接焊件
現代焊接的能量來源有很多種,包括氣體焰、電弧、激光、電子束、摩擦和超聲波等。除了在工廠中使用外,焊接還可以在多種環境下進行,如野外、水下和太空。無論在何處,焊接都可能給操作者帶來危險,所以在進行焊接時必須採取適當的防護措施。焊接給人體可能造成的傷害包括燒傷、觸電、視力損害、吸入有毒氣體、紫外線照射過度等。
電焊的基本工作原理是我們通過常用的220V電壓或者
380V的工業用電通過電焊機里的減壓器降低了電壓,增強了電流,利用電能產生的巨大熱量融化鋼鐵,焊條的融入使鋼鐵之間的融合性更高,還有,電焊條的外
層的葯皮起了非常大的作用,不信你把葯粉敲了看能焊接不:)。當然這種解釋是通俗的。
【電焊的種類】
電焊的種類比較多,目前常用的 有 以下幾種
1.電弧焊
電弧焊是目前應用最廣泛的焊接方法。它包括有:手弧焊、埋弧焊、鎢極氣體保護電弧焊、等離子弧焊、熔化極 氣體保護焊等。
絕大部分電弧焊是以電極與工件之間燃燒的電弧作熱源。在形成接頭時,可以採用也可以不採用填充金屬。所用
的電極是在焊接過程中熔化的焊絲時,叫作熔化極電弧焊,諸如手弧焊、埋弧焊、氣體保護電弧焊、管狀焊絲電
弧焊等;所用的電極是在焊接過程中不熔化的碳棒或鎢棒時,叫作不熔化極電弧焊,諸如鎢極氬弧焊、等離子弧 焊等。
2.手弧焊
手弧焊是各種電弧焊方法中發展最早、目前仍然應用最廣的一種焊接方法。它是以外部塗有塗料的焊條作電極和
填充金屬,電弧是在焊條的端部和被焊工件表面之間燃燒。塗料在電弧熱作用下一方面可以產生氣體以保護電弧
,另一方面可以產生熔渣覆蓋在熔池表面,防止熔化金屬與周圍氣體的相互作用。熔渣的更重要作用是與熔化金
屬產生物理化學反應或添加合金元素,改善焊縫金屬性能。
手弧焊設備簡單、輕便,操作靈活。可以應用於維修及裝配中的短縫的焊接,特別是可以用於難以達到的部位的
焊接。手弧焊配用相應的焊條可適用於大多數工業用碳鋼、不銹鋼、鑄鐵、銅、鋁、鎳及其合金。
E. 什麼叫焊接煙塵
在焊接過程中產生的氣體及灰塵。
焊接煙氣中的煙塵是一種十分復雜的物質專,已在煙塵中屬發現的元素多達20種以上,其中含量最多的是Fe、Ca、Na等,其次是Si、Al、Mn、Ti、Cu等。焊接煙塵中的主要有害物質為Fe2O3、SiO2、MnO、HF等,其中含量最多的為Fe2O3,一般占煙塵總量的35.56%,其次是SiO2,其含量佔10~20%,MnO佔5~20%左右。焊接煙氣中有毒有害氣體的成份主要為CO、CO2、O3、NOX、CH4等,其中以CO所佔的比例最大。由於有毒有害氣體產生量不大,且氣體成份復雜,較難定量化,本環評僅作定性分析,而對焊接煙塵則作定量化分析。焊接煙塵主要來自焊條的葯皮,少量來自焊芯及被焊工件,根據有關資料調查,焊接煙塵的產生量與焊條的種類有關。
F. 在焊接當中,什麼叫熔池
熔池是指在焊接熱源作用下,焊件上所形成的具有一定幾何形狀的液態金屬部分。熔池結晶後形成焊縫,熔化焊均產生熔池。對於手工電弧焊、熔化極氣體保護焊及葯芯焊絲電弧焊來說,熔池是類似的,但也不是完全相同的。手工或半自動焊工必須首先學習如何控制熔池金屬。而機構焊或自動焊系統通過感測器及機構裝置來控制熔池金屬。必須對焊接工藝文件中的所有焊接參數(包括熔滴過渡方式)進行正確的設置才能保證得到可控的熔池。熔池行為是非常復雜的,必須從多個角度進行考慮。
大部分熔池的控制,特別是立焊及仰焊時熔池的控制均涉及電源及送絲機調節以及電弧的正確操縱。如果熔池過大,熔池重力使熔池金屬流失,不能形成焊縫。如果熔深過大,則會使厚度較小的工件燒穿。但是,如果熔池的尺寸不夠大,則不能形成有效的焊縫。薄板焊接時,如果焊接速度適當,則熔池的體積較小,電弧穩定走後熔池立即凝固,可得到高質量的焊縫。弧焊電源的動態響應特性也影響熔池的穩定性。
熔池是隨電弧一起移動的,這使得熔池行為更加復雜。電弧熱輸入必須足夠大才能熔化母材,形成熔池。電弧熱輸入是指單位時間內輸入到焊縫中的熱量,是可計算的。通常計算單位焊縫長度上的熱輸入,即線能量。線能量計算公式如下;
H(W/in或W/m)=60EI/S
式中,E為電弧電壓、V;I為焊接電流,A:S為焊接速度,in/min或m/min;H為線能量,W/in或W/m。電弧產生的熱量並不能全部輸入到工件中,一部分通過輻射的形式散失到周圍空間中,一部分用於熔化焊絲或焊條或者加熱鎢極。輸入到工件中的熱量占電弧總熱量的百分數稱為熱效率系數。不同焊接方法的電弧熱效率系數相差很大,最低只有20%,最高可達95%。
熔池中的液態金屬的量取決於多種因素,包括電弧溫度、熱輸入、母材的熔點、工件厚度、工件大小、母材的熱導率以及工件的初始溫度等。而熱輸入又受焊絲(或焊條、鎢極)直徑和極性、電弧氣氛、焊接方法、焊接電流、電弧長度及焊接速度等的影響。只有正確地理解了這些焊接參數之間的關系才能成功地控制熔池。這些焊接參數還影響熔池的冷卻速度和凝固速度。
電弧還通過影響加熱及冷卻速度來影響熔池和焊縫的冶金特點。冷卻速度影響焊縫及熱影響的冶金性能,對於高碳鋼和合金鋼的影響尤其明顯。另外當焊絲的成分與母材不相同時,電弧還通過影響熔池的合金來影響焊縫的冶金性能。這些因素及其與熔池的關系將在後面予以闡述。
手工電弧焊時,焊工通過觀察熔池來調節焊接參數並操縱電弧。而自動焊需採用感測器來監視熔池,進而調節焊接參數。熔池的深度及寬度是影響焊縫質量的主要因素。
通過觀察熔池還可預先湊數是否有產生焊接缺陷的可能。高速焊接時,容易產生咬邊和駝峰缺陷。駝峰是焊道上的一列金屬熔瘤,這種缺陷通常產生於焊接速度大於50in/min(1270mm/min)的情況。咬邊缺陷是指沿焊縫趾部的母材部位燒熔出的凹陷或溝槽的寬度取決於電弧 的能量,特別是電弧電壓。如果熔池金屬在填滿坡口前就快速凝固,則產生咬邊缺陷。這種情況下,熔池金屬還沒有鋪展到坡口邊緣就已凝固。產生咬邊的主要原因是焊接速度過快人,另外,熔池金屬對工件的潤濕性也有一定的影響。熔池金屬的潤濕性取決於相關的各個表面張力之間關系。氧化物的表面張力顯著小於純金屬的表面張力。駝峰產生的主要原因也是焊接速度過快快,但焊絲角度以及通過保護氣體或工件表面的塗層進入電弧空間的氧氣也具有很大的影響。
熔池結晶特點如下:
(1)由於熔池體積小,周圍被冷卻金屬所包圍,所以熔池冷卻速度很快。
(2)熔池中液體金屬的溫度比一般澆注鋼水的溫度高得多,過渡熔滴的平均溫度約在2300℃左右,熔池平均溫度在1700℃左右,所以熔池中的液體金屬處於過熱狀態。
(3)熔池中心液休金屬溫度高,而邊緣凝固界面處冷卻速度大,所以熔他結晶是在很大溫度梯度(溫差)下進行的。
(4)熔池一般隨電弧的移動而移動,所以熔他的形狀和結晶組織受焊接速度的影響較大。同時,焊條的擺動、電弧的吹力、電磁力對熔池有強烈攪拌作用,熔池內的熔化金屬是在運動狀態下結晶的。
G. 焊接是怎樣形成的它的工作原理是什麼
焊接:也稱作熔接、鎔接,是一種以加熱、高溫或者高壓的方式接合金屬或其他熱塑性材料如塑料的製造工藝及技術。 焊接通過下列三種途徑達成接合的目的:
1、熔焊——加熱欲接合之工件使之局部熔化形成熔池,熔池冷卻凝固後便接合,必要時可加入熔填物輔助;
2、壓焊——焊接過程必須對焊件施加壓力
3、釺焊——採用比母材熔點低的金屬材料做釺料,利用液態釺料潤濕母材,填充間隙,並與母材互相擴散實現鏈接焊件
現代焊接的能量來源有很多種,包括氣體焰、電弧、激光、電子束、摩擦和超聲波等。除了在工廠中使用外,焊接還可以在多種環境下進行,如野外、水下和太空。無論在何處,焊接都可能給操作者帶來危險,所以在進行焊接時必須採取適當的防護措施。焊接給人體可能造成的傷害包括燒傷、觸電、視力損害、吸入有毒氣體、紫外線照射過度等。
基本原理:焊接過程中,工件和焊料熔化形成熔融區域,熔池冷卻凝固後便形成材料之間的連接。這一過程中,通常還需要施加壓力。焊接的能量來源有很多種,包括氣體焰、電弧、激光、電子束、摩擦和超聲波等。19世紀末之前,唯一的焊接工藝是鐵匠沿用了數百年的金屬鍛焊。最早的現代焊接技術出現在19世紀末,先是弧焊和氧燃氣焊,稍後出現了電阻焊。20世紀早期,隨著第一次和第二次世界大戰開戰,對軍用器材廉價可靠的連接方法需求極大,故促進了焊接技術的發展。今天,隨著焊接機器人在工業應用中的廣泛應用,研究人員仍在深入研究焊接的本質,繼續開發新的焊接方法,以進一步提高焊接質量。
H. 焊接造成的污染物種類是什麼
這個問題參考答案如下:
首先了解傳統的盤條前處理工序:
盤條放線裝置(加亂線停車回) 機械剝殼 水沖洗答 氣吹 電解酸洗 水沖洗 氣吹 塗硼(80度以上) 氣吹 烘乾 進粗拉工序
污染類型:傳統的盤條前處理工序里的酸和硼砂對環境的污染較大,而且酸和硼砂對工人的身體也不好,如果在後面鍍銅之前必須清洗干凈,如果清洗不幹凈會影響鍍銅和最後的焊接.
希望我積極認真的回復能得到你的採納.
如有不懂可採納後繼續追問,
I. 焊接問題產生的原因是什麼
氣孔,焊穿,焊瘤,夾渣,咬邊,焊縫單邊,問題原因有:母材不幹凈,電流過大或過小,焊條角度不對等。
J. 焊接的工作原理是什麼
焊接工作原理由我們常用的220V電壓或者380V的工業用電通過電焊機里的減壓器降低了電壓,增強了電流,利用電能產生的巨大熱量融化鋼鐵,焊條的融入使鋼鐵之間的融合性更高,還有,電焊條的外層的葯皮起了非常大的作用。
焊接工藝和焊接方法等因素有關,操作時需根據被焊工件的材質、牌號、化學成分,焊件結構類型,焊接性能要求來確定。
(10)焊接產生的叫什麼擴展閱讀:
金屬的焊接,按其工藝過程的特點分有熔焊,壓焊和釺焊三大類.
在熔焊的過程中,如果大氣與高溫的熔池直接接觸的話,大氣中的氧就會氧化金屬和各種合金元素。大氣中的氮、水蒸汽等進入熔池,還會在隨後冷卻過程中在焊縫中形成氣孔、夾渣、裂紋等缺陷,惡化焊縫的質量和性能。
為了提高焊接質量,人們研究出了各種保護方法。例如,氣體保護電弧焊就是用氬、二氧化碳等氣體隔絕大氣,以保護焊接時的電弧和熔池率;
又如鋼材焊接時,在焊條葯皮中加入對氧親和力大的鈦鐵粉進行脫氧,就可以保護焊條中有益元素錳、硅等免於氧化而進入熔池,冷卻後獲得優質焊縫。
各種壓焊方法的共同特點,是在焊接過程中施加壓力,而不加填充材料。多數壓焊方法,如擴散焊、高頻焊、冷壓焊等都沒有熔化過程,因而沒有像熔焊那樣的,有益合金元素燒損和有害元素侵入焊縫的問題,
從而簡化了焊接過程,也改善了焊接安全衛生條件。同時由於加熱溫度比熔焊低、加熱時間短,因而熱影響區小。許多難以用熔化焊焊接的材料,往往可以用壓焊焊成與母材同等強度的優質接頭。