脈沖焊接的缺點有哪些
Ⅰ 激光焊接技術的優缺點有哪些
激光焊接的優勢:
1、可將入熱量降到最低的需要量,熱影響區金相變化范圍小,且因熱傳導所導致的變形亦最低。
2、32mm板厚單道焊接的焊接工藝參數業經檢定合格,可降低厚板焊接所需的時間甚至可省掉填料金屬的使用。
3、不需使用電極,沒有電極污染或受損的顧慮。且因不屬於接觸式焊接製程,機具的耗損及變形接可降至最低。
4、激光束易於聚焦、對准及受光學儀器所導引,可放置在離工件適當之距離,且可在工件周圍的機具或障礙間再導引,其他焊接法則因受到上述的空間限制而無法發揮。
5、工件可放置在封閉的空間(經抽真空或內部氣體環境在控制下)。
6、激光束可聚焦在很小的區域,可焊接小型且間隔相近的部件。
7、可焊材質種類范圍大,亦可相互接合各種異質材料。
8、易於以自動化進行高速焊接,亦可以數位或電腦控制。
9、焊接薄材或細徑線材時,不會像電弧焊接般易有回熔的困擾。
10、不受磁場所影響(電弧焊接及電子束焊接則容易),能精確的對准焊件。
11、可焊接不同物性(如不同電阻)的兩種金屬
12、不需真空,亦不需做射線防護。
13、若以穿孔式焊接,焊道深一寬比可達10:1
14、可以切換裝置將激光束傳送至多個工作站。
激光焊接的缺點
1、焊件位置需非常精確,務必在激光束的聚焦范圍內。
2、焊件需使用夾治具時,必須確保焊件的最終位置需與激光束將沖擊的焊點對准。
3、最大可焊厚度受到限制滲透厚度遠超過19mm的工件,生產線上不適合使用激光焊接。
4、高反射性及高導熱性材料如鋁、銅及其合金等,焊接性會受激光所改變。
5、當進行中能量至高能量的激光束焊接時,需使用等離子控制器將熔池周圍的離子化氣體驅除,以確保焊道的再出現。
6、能量轉換效率太低,通常低於10%。
7、焊道快速凝固,可能有氣孔及脆化的顧慮。
8、設備昂貴。
Ⅱ 焊接的缺點有哪些~
無論何種焊接方法,焊後總是有焊接殘余應力存在,只是不同方法的殘余應內力大小不同容而已,焊接的零件同時由於熱影響區的急冷,在碳含量較高的條件下,容易產生淬火馬氏體,容易產生裂紋。焊接過程中控制不到位,容易產生氣孔、夾渣、未熔合、未焊透等缺陷。
Ⅲ 焊接常見的缺陷有哪些
(1)氣孔的分類氣孔從其形狀上分,有球狀氣孔、條蟲狀氣孔;從數量上可分為單個氣孔和群內狀氣孔。群狀氣孔又有均勻分容布氣孔,密集狀氣孔和鏈狀分布氣孔之分。按氣孔內氣體成分分類,有氫氣孔、氮氣孔、二氧化碳氣孔、一氧化碳氣孔、氧氣孔等。熔焊氣孔多為氫氣孔和一氧化碳氣孔。
(2)氣孔的形成機理常溫固態金屬中氣體的溶解度只有高溫液態金屬中氣體溶解度的幾十分之一至幾百分之一,熔池金屬在凝固過程中,有大量的氣體要從金屬中逸出來。當凝固速度大於氣體逸出速度時,就形成氣孔。
(3)產生氣孔的主要原因母材或填充金屬表面有銹、油污等,焊條及焊劑未烘乾會增加氣孔量,因為銹、油污及焊條葯皮、焊劑中的水分在高溫下分解為氣體,增加了高溫金屬中氣體的含量。焊接線能量過小,熔池冷卻速度大,不利於氣體逸出。焊縫金屬脫氧不足也會增加氧氣孔。
(4)氣孔的危害氣孔減少了焊縫的有效截面積,使焊縫疏鬆,從而降低了接頭的強度,降低塑性,還會引起泄漏。氣孔也是引起應力集中的因素。氫氣孔還可能促成冷裂紋。
Ⅳ 脈沖焊的特點:
優點:良好的引弧性能、焊接參數對所焊工件的良好適應性、熱輸入量可保持最小、較粗焊絲可焊較薄工件、在整個脈沖功率調節區內飛濺少、焊縫的良好抗氣孔性能、與直流焊相比對空間焊縫其熔化效率約高25%、良好的抗腐蝕性能;缺點:焊接設備較昂貴、焊接設備的調整較復雜、導電咀壽命較短
Ⅳ 焊接罕見的缺點有哪些
最明顯復的就是焊後總是有焊接殘余應制力存在,只是不同方法的殘余應力大小不同而已。 焊接因為熱輸入還有發生明顯的組織和性能變化的區域即熱影響區的存在,組織分布是不均勻的,熔合區和過熱區出現了嚴重的晶粒粗化,是整個焊接接頭的薄弱地帶,容易產生裂紋。焊接過程中因工藝、材料、條件等因素無法避免會產生氣孔、夾渣、未熔合、未焊透等缺陷。
Ⅵ 激光焊接技術的優缺點
(1)焊件位置需非常精確,務必在激光束的聚焦范圍內。
(2)焊件需使用夾治具時,必須確保焊件的最終位置需與激光束將沖擊的焊點對准。
(3)最大可焊厚度受到限制滲透厚度遠超過19mm的工件,生產線上不適合使用激光焊接。
(4)高反射性及高導熱性材料如鋁、銅及其合金等,焊接性會受激光所改變。
(5)當進行中能量至高能量的激光束焊接時,需使用等離子控制器將熔池周圍的離子化氣體驅除,以確保焊道的再出現。
(6)能量轉換效率太低,通常低於10%。
(7)焊道快速凝固,可能有氣孔及脆化的顧慮。
(8)設備昂貴。
為了消除或減少激光焊接的缺陷,更好地應用這一優秀的焊接方法,提出了一些用其它熱源與激光進行復合焊接的工藝,主要有激光與電弧、激光與等離子弧、激光與感應熱源復合焊接、雙激光束焊接以及多光束激光焊接等。此外還提出了各種輔助工藝措施,如激光填絲焊(可細分為冷絲焊和熱絲焊)、外加磁場輔助增強激光焊、保護氣控制熔池深度激光焊、激光輔助攪拌摩擦焊等。
(1)功率密度。 功率密度是激光加工中最關鍵的參數之一。採用較高的功率密度,在微秒時間范圍內,表層即可加熱至沸點,產生大量汽化。因此,高功率密度對於材料去除加工,如打孔、切割、雕刻有利。對於較低功率密度,表層溫度達到沸點需要經歷數毫秒,在表層汽化前,底層達到熔點,易形成良好的熔融焊接。因此,在傳導型激光焊接中,功率密度在范圍在10^4~10^6W/CM^2。
(2)激光脈沖波形。 激光脈沖波形在激光焊接中是一個重要問題,尤其對於薄片焊接更為重要。當高強度激光束射至材料表面,金屬表面將會有60~98%的激光能量反射而損失掉,且反射率隨表面溫度變化。在一個激光脈沖作用期間內,金屬反射率的變化很大。
(3)激光脈沖寬度。 脈寬是脈沖激光焊接的重要參數之一,它既是區別於材料去除和材料熔化的重要參數,也是決定加工設備造價及體積的關鍵參數。
(4)離焦量對焊接質量的影響。 激光焊接通常需要一定的離做文章一,因為激光焦點處光斑中心的功率密度過高,容易蒸發成孔。離開激光焦點的各平面上,功率密度分布相對均勻。離焦方式有兩種:正離焦與負離焦。焦平面位於工件上方為正離焦,反之為負離焦。按幾何光學理論,當正負離焦平面與焊接平面距離相等時,所對應平面上功率密度近似相同,但實際上所獲得的熔池形狀不同。負離焦時,可獲得更大的熔深,這與熔池的形成過程有關。實驗表明,激光加熱50~200us材料開始熔化,形成液相金屬並出現問分汽化,形成市壓蒸汽,並以極高的速度噴射,發出耀眼的白光。與此同時,高濃度汽體使液相金屬運動至熔池邊緣,在熔池中心形成凹陷。當負離焦時,材料內部功率密度比表面還高,易形成更強的熔化、汽化,使光能向材料更深處傳遞。所以在實際應用中,當要求熔深較大時,採用負離焦;焊接薄材料時,宜用正離焦。
Ⅶ 常見點焊焊接的缺陷及防止措施有哪些
1、外觀缺陷:
外觀缺陷(表面缺陷)是指不用藉助於儀器,從工件表面可以發現的缺陷。常見的外觀缺陷有咬邊、焊瘤、凹陷及焊接變形等,有時還有表面氣孔和表面裂紋。單面焊的根部未焊透等。
A、咬邊是指沿著焊趾,在母材部分形成的凹陷或溝槽, 它是由於電弧將焊縫邊緣的母材熔化後沒有得到熔敷金屬的充分補充所留下的缺口。產生咬邊的主要原因是電弧熱量太高,即電流太大,運條速度太小所造成的。焊條與工件間角度不正確,擺動不合理,電弧過長,焊接次序不合理等都會造成咬邊。直流焊時電弧的磁偏吹也是產生咬邊的一個原因。某些焊接位置(立、橫、仰)會加劇咬邊。
咬邊減小了母材的有效截面積,降低結構的承載能力,同時還會造成應力集中,發展為裂紋源。
矯正操作姿勢,選用合理的規范,採用良好的運條方式都會有利於消除咬邊。焊角焊縫時,用交流焊代替直流焊也能有效地防止咬邊。
B、焊瘤焊縫中的液態金屬流到加熱不足未熔化的母材上或從焊縫根部溢出,冷卻後形成的未與母材熔合的金屬瘤即為焊瘤。焊接規范過強、焊條熔化過快、焊條質量欠佳(如偏芯),焊接電源特性不穩定及操作姿勢不當等都容易帶來焊瘤。在橫、立、仰位置更易形成焊瘤。
焊瘤常伴有未熔合、夾渣缺陷,易導致裂紋。同時,焊瘤改變了焊縫的實際尺寸,會帶來應力集中。管子內部的焊瘤減小了它的內徑,可能造成流動物堵塞。
防止焊瘤的措施:使焊縫處於平焊位置,正確選用規范,選用無偏芯焊條,合理操作。
C、凹坑 凹坑指焊縫表面或背面局部的低於母材的部分。
凹坑多是由於收弧時焊條(焊絲)未作短時間停留造成的(此時的凹坑稱為弧坑),仰立、橫焊時,常在焊縫背面根部產生內凹。
凹坑減小了焊縫的有效截面積,弧坑常帶有弧坑裂紋和弧坑縮孔。
防止凹坑的措施:選用有電流衰減系統的焊機,盡量選用平焊位置,選用合適的焊接規范,收弧時讓焊條在熔池內短時間停留或環形擺動,填滿弧坑。
D、未焊滿 未焊滿是指焊縫表面上連續的或斷續的溝槽。填充金屬不足是產生未焊滿的根本原因。規范太弱,焊條過細,運條不當等會導致未焊滿。
未焊滿同樣削弱了焊縫,容易產生應力集中,同時,由於規范太弱使冷卻速度增大,容易帶來氣孔、裂紋等。
防止未焊滿的措施:加大焊接電流,加焊蓋面焊縫。
E、燒穿 燒穿是指焊接過程中,熔深超過工件厚度,熔化金屬自焊縫背面流出,形成穿孔性缺。
焊接電流過大,速度太慢,電弧在焊縫處停留過久,都會產生燒穿缺陷。工件間隙太大,鈍邊太小也容易出現燒穿現象。
燒穿是鍋爐壓力容器產品上不允許存在的缺陷,它完全破壞了焊縫,使接頭喪失其聯接飛及承載能力。
選用較小電流並配合合適的焊接速度,減小裝配間隙,在焊縫背面加設墊板或葯墊,使用脈沖焊,能有效地防止燒穿。
F、其他表面缺陷: (1)成形不良 指焊縫的外觀幾何尺寸不符合要求。有焊縫超高,表面不光滑,以及焊縫過寬,焊縫向母材過渡不圓滑等。
(2)錯邊指兩個工件在厚度方向上錯開一定位置,,它既可視作焊縫表面缺陷,又可視作裝配成形缺陷。
(3)塌陷 單面焊時由於輸入熱量過大,熔化金屬過多而使液態金屬向焊縫背面塌落, 成形後焊縫背面突起,正面下塌。
(4)表面氣孔及弧坑縮孔。
(5)各種焊接變形如角變形、扭曲、波浪變形等都屬於焊接缺陷O角變形也屬於裝配成形缺陷。
2、氣孔和夾渣
A、氣孔 氣孔是指焊接時,熔池中的氣體未在金屬凝固前逸出,殘存於焊縫之中所形成的空穴。其氣體可能是熔池從外界吸收的,也可能是焊接冶金過程中反應生成的。
(1)氣孔的分類氣孔從其形狀上分,有球狀氣孔、條蟲狀氣孔;從數量上可分為單個氣孔和群狀氣孔。群狀氣孔又有均勻分布氣孔,密集狀氣孔和鏈狀分布氣孔之分。按氣孔內氣體成分分類,有氫氣孔、氮氣孔、二氧化碳氣孔、一氧化碳氣孔、氧氣孔等。熔焊氣孔多為氫氣孔和一氧化碳氣孔。
(2)氣孔的形成機理常溫固態金屬中氣體的溶解度只有高溫液態金屬中氣體溶解度的幾十分之一至幾百分之一,熔池金屬在凝固過程中,有大量的氣體要從金屬中逸出來。當凝固速度大於氣體逸出速度時,就形成氣孔。
(3)產生氣孔的主要原因母材或填充金屬表面有銹、油污等,焊條及焊劑未烘乾會增加氣孔量,因為銹、油污及焊條葯皮、焊劑中的水分在高溫下分解為氣體,增加了高溫金屬中氣體的含量。焊接線能量過小,熔池冷卻速度大,不利於氣體逸出。焊縫金屬脫氧不足也會增加氧氣孔。
(4)氣孔的危害氣孔減少了焊縫的有效截面積,使焊縫疏鬆,從而降低了接頭的強度,降低塑性,還會引起泄漏。氣孔也是引起應力集中的因素。氫氣孔還可能促成冷裂紋。
(5)防止氣孔的措施a.清除焊絲,工作坡口及其附近表面的油污、鐵銹、水分和雜物。b.採用鹼性焊條、焊劑,並徹底烘乾。c.採用直流反接並用短電弧施焊。d.焊前預熱,減緩冷卻速度。e.用偏強的規范施焊。
B、夾渣 夾渣是指焊後溶渣殘存在焊縫中的現象。
(1).夾渣的分類a.金屬夾渣:指鎢、銅等金屬顆粒殘留在焊縫之中,習慣上稱為夾鎢、夾銅。b.非金屬夾渣:指未熔的焊條葯皮或焊劑、硫化物、氧化物、氮化物殘留於焊縫之中。冶金反應不完全,脫渣性不好。
(2)夾渣的分布與形狀有單個點狀夾渣,條狀夾渣,鏈狀夾渣和密集夾渣
(3)夾渣產生的原因a.坡口尺寸不合理;b.坡口有污物;c.多層焊時,層間清渣不徹底;d.焊接線能量小;e.焊縫散熱太快,液態金屬凝固過快;f.焊條葯皮,焊劑化學成分不合理,熔點過高;g. 鎢極惰性氣體保護焊時,電源極性不當,電、流密度大, 鎢極熔化脫落於熔池中。h.手工焊時,焊條擺動不良,不利於熔渣上浮。可根據以上原因分別採取對應措施以防止夾渣的產生。
(4)夾渣的危害點狀夾渣的危害與氣孔相似,帶有尖角的夾渣會產生尖端應力集中,尖端還會發展為裂紋源,危害較大。
3、裂紋
焊縫中原子結合遭到破壞,形成新的界面而產生的縫隙稱為裂紋。
A、.裂紋的分類
根據裂紋尺寸大小,分為三類:(1)宏觀裂紋:肉眼可見的裂紋。(2)微觀裂紋:在顯微鏡下才能發現。(3)超顯微裂紋:在高倍數顯微鏡下才能發現,一般指晶間裂紋和晶內裂紋。
從產生溫度上看,裂紋分為兩類:
(1)熱裂紋:產生於Ac3線附近的裂紋。一般是焊接完畢即出現,又稱結晶裂紋。這種二裂紋主要發生在晶界,裂紋面上有氧化色彩,失去金屬光澤。
(2)冷裂紋:指在焊畢冷至馬氏體轉變溫度M3點以下產生的裂紋,一般是在焊後一段時間(幾小時,幾天甚至更長)才出現,故又稱延遲裂紋。
按裂紋產生的原因分,又可把裂紋分為: (1)再熱裂紋:接頭冷卻後再加熱至500~700℃時產生的裂紋。再熱裂紋產生於沉澱強化的材料(如含Cr、Mo、V、Ti、Nb的金屬)的焊接熱影響區內的粗晶區,一般從熔合線向熱影響區的粗晶區發展,呈晶間開裂特徵。
(2)層狀撕裂主要是由於鋼材在軋制過程中,將硫化物(MnS)、硅酸鹽類等雜質夾在其中,形成各向異性。在焊接應力或外拘束應力的使用下,金屬沿軋制方向的雜物開裂。
(3)應力腐蝕裂紋:在應力和腐蝕介質共同作用下產生的裂紋。除殘余應力或拘束應力的因素外,應力腐蝕裂紋主要與焊縫組織組成及形態有關。
B、裂紋的危害
裂紋,尤其是冷裂紋,帶來的危害是災難性的。世界上的壓力容器事故除極少數是由於設計不合理,選材不當的原因引起的以外,絕大部分是由於裂紋引起的脆性破壞。
C、.熱裂紋(結晶裂紋)
(1)結晶裂紋的形成機理熱裂紋發生於焊縫金屬凝固末期,敏感溫度區大致在固相線附近的高溫區,最常見的熱裂紋是結晶裂紋,其生成原因是在焊縫金屬凝固過程中,結晶偏析使雜質生成的低熔點共晶物富集於晶界,形成所謂\"液態薄膜\",在特定的敏感溫度區(又稱脆性溫度區)間,其強度極小,由於焊縫凝固收縮而受到拉應力,最終開裂形成裂紋。結晶裂紋最常見的情況是沿焊縫中心長度方向開裂,為縱向裂紋,有時也發生在焊縫內部兩個柱狀晶之間,為橫向裂紋。弧坑裂紋是另一種形態的,常見的熱裂紋。
熱裂紋都是沿晶界開裂,通常發生在雜質較多的碳鋼、低合金鋼、奧氏體不銹鋼等材料氣焊縫中
(2)影響結晶裂紋的因素
a合金元素和雜質的影響碳元素以及硫、磷等雜質元素的增加,會擴大敏感溫度區,使結晶裂紋的產生機會增多。
b.冷卻速度的影響冷卻速度增大,一是使結晶偏析加重,二是使結晶溫度區間增大,兩者都會增加結晶裂紋的出現機會;
c.結晶應力與拘束應力的影響在脆性溫度區內,金屬的強度極低,焊接應力又使這飛部分金屬受拉,當拉應力達到一定程度時,就會出現結晶裂紋。
(3)防止結晶裂紋的措施a.減小硫、磷等有害元素的含量,用含碳量較低的材料焊接。b.加入一定的合金元素,減小柱狀晶和偏析。如鋁、銳、鐵、鏡等可以細化晶粒。,c.採用熔深較淺的焊縫,改善散熱條件使低熔點物質上浮在焊縫表面而不存在於焊縫中。d.合理選用焊接規范,並採用預熱和後熱,減小冷卻速度。e.採用合理的裝配次序,減小焊接應力。
D、.再熱裂紋
(1)再熱裂紋的特徵
a.再熱裂紋產生於焊接熱影響區的過熱粗晶區。產生於焊後熱處理等再次加熱的過程中。
b.再熱裂紋的產生溫度:碳鋼與合金鋼550~650℃奧氏體不銹鋼約300℃
c.再熱裂紋為晶界開裂(沿晶開裂)。
d.最易產生於沉澱強化的鋼種中。
e.與焊接殘余應力有關。
(2)再熱裂紋的產生機理
a.再熱裂紋的產生機理有多種解釋,其中模形開裂理論的解釋如下:近縫區金屬在高溫熱循環作用下,強化相碳化物(如碳化鐵、碳化飢、碳化鏡、碳化錯等)沉積在晶內的位錯區上,使晶內強化強度大大高於晶界強化,尤其是當強化相彌散分布在晶粒內時, 阻礙晶粒內部的局部調整,又會阻礙晶粒的整體變形,這樣,由於應力鬆弛而帶來的塑性變形就主要由晶界金屬來承擔,於是,晶界應力集中,就會產生裂紋,即所謂的模形開裂。
(3)再熱裂紋的防止a.注意冶金元素的強化作用及其對再熱裂紋的影響。b.合理預熱或採用後熱,控製冷卻速度。c.降低殘余應力避免應力集中。d.回火處理時盡量避開再熱裂紋的敏感溫度區或縮短在此溫度區內的停留時間。
E、.冷裂紋.
(1)冷裂紋的特徵 a.產生於較低溫度,且產生於焊後一段時間以後,故又稱延遲裂紋。b.主要產生於熱影響區,也有發生在焊縫區的。c.冷裂紋可能是沿晶開裂,穿晶開裂或兩者混合出現。d.冷裂紋引起的構件破壞是典型的脆斷。
(2)冷裂紋產生機理a.瘁硬組織(馬氏體)減小了金屬的塑性儲備。b.接頭的殘余應力使焊縫受拉。c.接頭內有一定的含氫量。
含氫量和拉應力是冷裂紋(這里指氫致裂紋)產生的兩個重要因素。一般來說,金屬內部原子的排列並非完全有序的,而是有許多微觀缺陷。在拉應力的作用下,氫向高應力區(缺陷部位)擴散聚集。當氫聚集到一定濃度時,就會破壞金屬中原子的結合鍵,金屬內就出現一些微觀裂紋。應力不斷作用,氫不斷地聚集,微觀裂紋不斷地擴展,直致發展為宏觀裂紋,最後斷裂。決定冷裂紋的產生與否,有一個臨界的含氫量和一個臨界的應力值o當接頭內氫的濃度小於臨界含氫量,或所受應力小於臨界應力時,將不會產生冷裂紋(即延遲時間無限長)。在所有的裂紋中,冷裂紋的危害性最大。
(3)防止冷裂紋的措施 a.採用低氫型鹼性焊條,嚴格烘乾,在100~150℃下保存,隨取隨用。b.提高預熱溫度,採用後熱措施,並保證層間溫度不小於預熱溫度,選擇合理的焊接規范,避免焊縫中出現洋硬組織c.選用合理的焊接順序,減少焊接變形和焊接應力d.焊後及時進行消氫熱處理。
4、未焊透
未焊透指母材金屬未熔化,焊縫金屬沒有進人,接頭根部的現象。
A、產生未焊透的原因
(1)焊接電流小,熔深淺。(2)坡口和間隙尺寸不合理,鈍邊太大。(3)磁偏吹影響。(4)焊條偏芯度太大(5)層間及焊根清理不良。
B、.未焊透的危害 未焊透的危害之一是減少了焊縫的有效截面積,使接頭強度下降。其次,未焊透焊透引起的應力集中所造成的危害,比強度下降的危害大得多。未焊透嚴重降低焊縫的疲勞強度。未焊透可能成為裂紋源,是造成焊縫破壞的重要原因。未焊透引起的應力集中所造成的危害,比強度下降的危害大得多。未焊透嚴重降低焊縫的疲勞強度。未焊透可能成為裂紋源,是造成焊縫破壞的重要原因。
C、.未焊透的防止 使用較大電流來焊接是防止未焊透的基本方法。另外,焊角焊縫時,1用交流代替直流以防止磁偏吹,合理設計坡口並加強清理,用短弧焊等措施也可有效防止未焊透的產生。
5、未熔合
未熔合是指焊縫金屬與母材金屬,或焊縫金屬之間未熔化結合在一起的缺陷。按其所在部位,未熔合可分為坡口未熔合,層間未熔合根部未熔合三種。
A、.產生未熔合缺陷的原因(1)焊接電流過小;(2)焊接速度過快;(3)焊條角度不對;(4)產生了弧偏吹現象;旺,(5)焊接處於下坡焊位置,母材未熔化時已被鐵水復蓋;(6)母材表面有污物或氧化物影響熔敷金屬與母材間的熔化結合等。
B、未熔合的危害 未熔合是一種面積型缺陷,坡口未熔合和根部未熔合對承載截面積的減小都非常明顯,應力集中也比較嚴重,其危害性僅次於裂紋。
C、.未熔合的防止 採用較大的焊接電流,正確地進行施焊操作,注意坡口部位的清潔。
6、其他缺陷
(1)焊縫化學成分或組織成分不符合要求: 焊材與母材匹配不當,或焊接過程中元素燒損等原因,容易使焊縫金屬的化學成份發生變化,或造成焊縫組織不符合要求。這可能帶來焊縫的力學性能的下降,還會影響接頭的耐蝕性能。
(2)過熱和過燒: 若焊接規范使用不當,熱影響區長時間在高溫下停留,會使晶粒變得粗大,即出現過熱組織。若溫度進一步升高,停留時間加長,可能使晶界發生氧化或局部熔化,出現過燒組織。過熱可通過熱處理來消除,而過燒是不可逆轉的缺陷。
(3)白點:在焊縫金屬的拉斷面上出現的象魚目狀的白色斑,即為自點F白點是由於氫聚集而造成的,危害極大。
Ⅷ 各種焊接方法的優缺點
手工電弧焊、埋弧自動焊和氣體保護焊等三種。
手工自動焊的最大優點是設備簡內單,應用靈活、容方便,適用面廣,可焊接各種焊接位置和直縫、環縫及各種曲線焊縫。尤其適用於操作不變的場合和短小焊縫的焊接;
埋弧自動焊具有生產率高、焊縫質量好、勞動條件好等特點;
氣體保護焊具有保護效果好、電弧穩定、熱量集中等特點。
Ⅸ 常見的焊接缺陷有哪些焊縫缺陷檢驗方法有哪幾種
焊縫缺陷的種類很多,按其在焊縫中的位置,可分為內部缺陷與外部缺陷兩大類。外部缺陷位於焊縫外表面,用肉眼或低倍放大鏡可以看到,例如,焊縫尺寸不符合要求,咬邊、焊瘤、弧坑、氣孔、裂紋、夾渣、未焊透、未溶合等。內部缺陷位於焊縫的內部。這類缺陷用破壞性檢驗或探傷方法來發現,如未焊透、未溶合、氣孔、裂紋、夾渣等。
焊接缺陷檢驗的常用方法
1,外觀檢驗,通常就是靠肉眼觀測檢驗,藉助一些工具能大大提高檢驗的准確性,常用的工具有:焊縫檢驗規、捲尺、鋼直尺、低倍放大鏡等,一般是檢驗焊縫外部的缺陷。
2氣密性檢驗,一般是對熔器、管道等須要對其進行氣密性檢驗,根據被測對象的要求不同進行不一樣的檢驗。①沉水試驗,將充有一定壓力的容器放在水槽內下壓一定深度,然後緩慢轉動,觀察容器上是否有氣泡來斷定是否滲漏。②肥皂水檢驗,在充有一壓力氣體的容器上用蘸有皂液的毛刷依次向焊縫塗抹,全部未出現氣泡則為合格。
3,煤油試驗,它是利用煤油的強滲透能力,對焊縫緻密性進行檢驗在焊縫一側(容器的外側)塗石灰水,石灰水干後再焊縫的另一側(容器的內側)塗煤油,檢驗白石灰上是否出現油斑。
4,壓力試驗,也叫耐壓試驗,它包括水壓試驗和氣壓試驗。壓力試驗是通過對容器加壓(水壓或氣壓)到試驗壓力,檢驗其有無滲漏和保壓情況的檢驗方法。試驗壓力應高於工作壓力,否則不能保證容器的安全運行。壓力試驗用於評定鍋爐、壓力容器、壓力管道等焊接構件的整體強度性能、變形量大小及有無滲漏現象。
壓力試驗一方面檢驗結構的緻密性,另一方面還能檢演結構的強度。水壓試驗,當充滿水同時完全排凈空氣後關閉水閥,再用高壓水泵對容器分級加壓直至達到試驗壓力(一般為工作壓力的1.25~1.5倍);檢驗焊縫有無水珠(滲漏),如果有說明有滲漏;
檢驗保壓情況,停止加壓後保壓5~10min,壓力應無明顯下降。氣壓試驗,採用高壓氣泵對容器進行逐級升壓每升一級保壓一定時間,直至升到規定的試驗壓力,用皂水檢查是否滲漏,並檢查保壓情況。
5,射線檢測,射線在穿透物質過程中因吸收和散射而使強度減弱、衰減,衰減程度取決於穿透物質的衰減系數和穿透物質的厚度,如果被透照工件內部存在缺陷,且缺陷介質與被檢工件對射線衰減程度不同,會使得透過工件的射線產生強度差異,使膠片的感光程度不同,經暗室處理後底片上有缺陷的部位黑度較大,評片人員可憑此判斷缺陷情況。射線檢測應由具有專職資格證的人員進行操作。
6,超聲檢測,它是利用超聲波在介質中傳播的聲學特性,檢測金屬材料及其工件內部或表面缺陷的方法。超聲波在金屬中的傳播過程中遇到界面則出現反射,在檢測時超聲波在工件的兩表面都有反射脈沖。如果工件內部有缺陷的話,則兩界的脈沖中間會出現第三個脈沖,根據此脈沖的位置可以判斷出缺陷位置。超聲波探傷設備比較輕便靈活、探測范圍廣。
7,磁粉檢測,鐵磁性金屬材料的導磁率比空氣要大得多,當它在磁場中被磁化以後,磁力線將集中在材料中,如果材料的表面或近表面存在氣孔,裂紋和夾渣等缺陷,磁力線則難於穿過這些缺陷,因此就會在缺陷處形成局部漏磁場,此時在材料上撒上磁粉,磁粉將被漏磁場吸引力聚集在缺陷處,進而顯示出缺陷的宏觀痕跡。經過磁粉檢測的工件要進行退磁處理。
8,其它檢驗:①磁軛法檢驗;②滲透檢測;③渦流檢測;④彎曲試驗;⑤沖擊試驗;⑥金相檢驗。
(9)脈沖焊接的缺點有哪些擴展閱讀:
焊接缺陷的分類
1,,按產生原因有:①結構缺陷(構造不連續、焊縫布置不良引起的應力和變形、錯邊);②工藝缺陷(焊角尺寸不合適、余高過大、成形不良、電弧擦傷、夾渣、凹坑、未焊滿、燒穿、未焊透、未熔合、焊瘤、咬邊);③冶金缺陷(裂紋、氣孔、夾雜物、性能惡化)。
2,按性質分有:①形狀缺陷;②未熔合未焊透;③固體夾雜;④孔穴;⑤裂紋(熱裂紋、焊趾裂紋、層狀撕裂);⑥其它缺陷。
3,按在焊縫中的位置分有:①外部缺陷(焊縫尺寸及形狀不符合要求、嚴重飛濺、下塌與燒穿、弧坑、焊瘤、咬邊、嚴重變形);②內部缺陷(氣孔、未熔合、未焊透、夾渣、熱裂紋<結晶裂紋、液化裂紋、多邊化裂紋>、再熱裂紋、冷裂紋<延遲裂紋、淬火裂紋、低塑性脆化裂紋>、層狀撕裂、應力腐蝕裂紋);③組織缺陷(淬硬組織、氧化、疏鬆、其它組織<如魏氏組織、晶粒變粗、晶粒度不均勻等脆化現象,出現一些碳化物、氮化物等硬化相,以及嚴重偏析和焊縫弱化現象等問題>)。
Ⅹ 焊接的分類和特點主要介紹下焊接有何優缺點
一、焊接的常用主要種類
1)電焊;2)氣焊;3)激光焊;4)釺焊;5)熱熔焊;6)電子束焊;7)爆炸焊;
8)等離子焊;9)電渣焊;10)擴散焊;11)摩擦焊;12)高頻焊等。
二、常用焊接方法的基本原理及特點
1.手弧電焊
手弧電焊是各種電弧焊方法中發展最早、目前仍然應用最廣的一種焊接方法。它是以外部塗有塗料的焊條作電極和填充金屬,電弧是在焊條的端部和被焊工件表面之間燃燒。塗料在電弧熱作用下一方面可以產生氣體以保護電弧,另一方面可以產生熔渣覆蓋在熔池表面,防止熔化金屬與周圍氣體的相互作用。熔渣的更重要作用是與熔化金屬產生物理化學反應或添加合金元素,改善焊縫金屬性能。
手弧焊設備簡單、輕便,*作靈活。可以應用於維修及裝配中的短縫的焊接,特別是可以用於難以達到的部位的焊接。手弧焊配用相應的焊條可適用於大多數工業用碳鋼、不銹鋼、鑄鐵、銅、鋁、鎳及其合金。
2.鎢極氣體保護電弧焊
這是一種不熔化極氣體保護電弧焊,是利用鎢極和工件之間的電弧使金屬熔化而形成焊縫的。焊接過程中鎢極不熔化,只起電極的作用。同時由焊炬的噴嘴送進氬氣或氦氣作保護。還可根據需要另外添加金屬。在國際上通稱為TIG焊。
鎢極氣體保護電弧焊由於能很好地控制熱輸入,所以它是連接薄板金屬和打底焊的一種極好方法。這種方法幾乎可以用於所有金屬的連接,尤其適用於焊接鋁、鎂這些能形成難熔氧化物的金屬以及象鈦和鋯這些活潑金屬。這種焊接方法的焊縫質量高,但與其它電弧焊相比,其焊接速度較慢。
3.熔化極氣體保護電弧焊
這種焊接方法是利用連續送進的焊絲與工件之間燃燒的電弧作熱源,由焊炬噴嘴噴出的氣體保護電弧來進行焊接的。
熔化極氣體保護電弧焊通常用的保護氣體有:氬氣、氦氣、CO2氣或這些氣體的混合氣。以氬氣或氦氣為保護氣時稱為熔化極惰性氣體保護電弧焊(在國際上簡稱為MIG焊);以惰性氣體與氧化性氣體(O2,CO2)混合氣為保護氣體時,或以CO2氣體或CO2+O2混合氣為保護氣時,或以CO2氣體或CO2+O2混合氣為保護氣時,統稱為熔化極活性氣體保護電弧焊(在國際上簡稱為MAG焊)。
熔化極氣體保護電弧焊的主要優點是可以方便地進行各種位置的焊接,同時也具有焊接速度較快、熔敷率高等優點。熔化極活性氣體保護電弧焊可適用於大部分主要金屬,包括碳鋼、合金鋼。熔化極惰性氣體保護焊適用於不銹鋼、鋁、鎂、銅、鈦、鋯及鎳合金。利用這種焊接方法還可以進行電弧點焊。
4.等離子弧焊
等離子弧焊也是一種不熔化極電弧焊。它是利用電極和工件之間地壓縮電弧(叫轉發轉移電弧)實現焊接的。所用的電極通常是鎢極。產生等離子弧的等離子氣可用氬氣、氮氣、氦氣或其中二者之混合氣。同時還通過噴嘴用惰性氣體保護。焊接時可以外加填充金屬,也可以不加填充金屬。
等離子弧焊焊接時,由於其電弧挺直、能量密度大、因而電弧穿透能力強。等離子弧焊焊接時產生的小孔效應,對於一定厚度范圍內的大多數金屬可以進行不開坡口對接,並能保證熔透和焊縫均勻一致。因此,等離子弧焊的生產率高、焊縫質量好。但等離子弧焊設備(包括噴嘴)比較復雜,對焊接工藝參數的控制要求較高。
鎢極氣體保護電弧焊可焊接的絕大多數金屬,均可採用等離子弧焊接。與之相比,對於1mm以下的極薄的金屬的焊接,用等離子弧焊可較易進行。
5.電阻焊
這是以電阻熱為能源的一類焊接方法,包括以熔渣電阻熱為能源的電渣焊和以固體電阻熱為能源的電阻焊。由於電渣焊更具有獨特的特點,故放在後面介紹。這里主要介紹幾種固體電阻熱為能源的電阻焊,主要有點焊、縫焊、凸焊及對焊等。
電阻焊一般是使工件處在一定電極壓力作用下並利用電流通過工件時所產生的電阻熱將兩工件之間的接觸表面熔化而實現連接的焊接方法。通常使用較大的電流。為了防止在接觸面上發生電弧並且為了鍛壓焊縫金屬,焊接過程中始終要施加壓力。
進行這一類電阻焊時,被焊工件的表面善對於獲得穩定的焊接質量是頭等重要的。因此,焊前必須將電極與工件以及工件與工件間的接觸表面進行清理。
點焊、縫焊和凸焊的牾在於焊接電流(單相)大(幾千至幾萬安培),通電時間短(幾周波至幾秒),設備昂貴、復雜,生產率高,因此適於大批量生產。主要用於焊接厚度小於3mm的薄板組件。各類鋼材、鋁、鎂等有色金屬及其合金、不銹鋼等均可焊接。
6.電子束焊
電子束焊是以集中的高速電子束轟擊工件表面時所產生的熱能進行焊接的方法。
電子束焊接時,由電子槍產生電子束並加速。常用的電子束焊有:高真空電子束焊、低真空電子束焊和非真空電子束焊。前兩種方法都是在真空室內進行。焊接准備時間(主要是抽真空時間)較長,工件尺寸受真空室大小限制。
電子束焊與電弧焊相比,主要的特點是焊縫熔深大、熔寬小、焊縫金屬純度高。它既可以用在很薄材料的精密焊接,又可以用在很厚的(最厚達300mm)構件焊接。所有用其它焊接方法能進行熔化焊的金屬及合金都可以用電子束焊接。主要用於要求高質量的產品的焊接。還能解決異種金屬、易氧化金屬及難熔金屬的焊接。但不適於大批量產品。
7.激光焊
激光焊是利用大功率相干單色光子流聚焦而成的激光束為熱源進行的焊接。這種焊接方法通常有連續功率激光焊和脈沖功率激光焊。
激光焊優點是不需要在真空中進行,缺點則是穿透力不如電子束焊強。激光焊時能進行精確的能量控制,因而可以實現精密微型器件的焊接。它能應用於很多金屬,特別是能解決一些難焊金屬及異種金屬的焊接。
8.釺焊
釺焊的能源可以是化學反應熱,也可以是間接熱能。它是利用熔點比被焊材料的熔點低的金屬作釺料,經過加熱使釺料熔化,*毛細管作用將釺料及入到接頭接觸面的間隙內,潤濕被焊金屬表面,使液相與固相之間互擴散而形成釺焊接頭。因此,釺焊是一種固相兼液相的焊接方法。
釺焊加熱溫度較低,母材不熔化,而且也不需施加壓力。但焊前必須採取一定的措施清除被焊工件表面的油污、灰塵、氧化膜等。這是使工件潤濕性好、確保接頭質量的重要保證。
釺料的液相線濕度高於450℃而低於母材金屬的熔點時,稱為硬釺焊;低於450℃時,稱為軟釺焊。
根據熱源或加熱方法不同釺焊可分為:火焰釺焊、感應釺焊、爐中釺焊、浸沾釺焊、電阻釺焊等。目前感應釺焊應用范圍最廣,比如百銳思釺焊提供的感應釺焊設備,已廣泛用於空調製冷、電機、衛浴、眼鏡和汽車等行業。
釺焊時由於加熱溫度比較低,故對工件材料的性能影響較小,焊件的應力變形也較小。但釺焊接頭的強度一般比較低,耐熱能力較差。
釺焊可以用於焊接碳鋼、不銹鋼、高溫合金、鋁、銅等金屬材料,還可以連接異種金屬、金屬與非金屬。適於焊接受載不大或常溫下工作的接頭,對於精密的、微型的以及復雜的多釺縫的焊件尤其適用。
9.電渣焊
電渣焊是以熔渣的電阻熱為能源的焊接方法。焊接過程是在立焊位置、在由兩工件端面與兩側水冷銅滑塊形成的裝配間隙內進行。焊接時利用電流通過熔渣產生的電阻熱將工件端部熔化。
根據焊接時所用的電極形狀,電渣焊分為絲極電渣焊、板極電渣焊和熔嘴電渣焊。
電渣焊的優點是:可焊的工件厚度大(從30mm到大於1000mm),生產率高。主要用於在斷面對接接頭及丁字接頭的焊接。
電渣焊可用於各種鋼結構的焊接,也可用於鑄件的組焊。電渣焊接頭由於加熱及冷卻均較慢,熱影響區寬、顯微組織粗大、韌性、因此焊接以後一般須進行正火處理。
10.高頻焊
高頻焊是以固體電阻熱為能源。焊接時利用高頻電流在工件內產生的電阻熱使工件焊接區表層加熱到熔化或接近的塑性狀態,隨即施加(或不施加)頂鍛力而實現金屬的結合。因此它是一種固相電阻焊方法。
高頻焊根據高頻電流在工件中產生熱的方式可分為接觸高頻焊和感應高頻焊。接觸高頻焊時,高頻電流通過與工件機械接觸而傳入工件。感應高頻焊時,高頻電流通過工件外部感應圈的耦合作用而在工件內產生感應電流。
高頻焊是專業化較強的焊接方法,要根據產品配備專用設備。生產率高,焊接速度可達30m/min。主要用於製造管子時縱縫或螺旋縫的焊接。
11.氣焊
氣焊是用氣體火焰為熱源的一種焊接方法。應用最多的是以乙炔氣作燃料的氧-乙炔火焰。由於設備簡單使用方便,但氣焊加熱速度及生產率較低,熱影響區較大,且容易引起較大的變形。
氣焊可用於很多黑色金屬、有色金屬及合金的焊接。一般適用於維修及單件薄板焊接。
12.氣壓焊
氣壓焊和氣焊一樣,氣壓焊也是以氣體火焰為熱源。焊接時將兩對接的工件的端部加熱到一定溫度,後再施加足夠的壓力以獲得牢固的接頭。是一種固相焊接。
氣壓焊時不加填充金屬,常用於鐵軌焊接和鋼筋焊接。
13.爆炸焊
爆*炸焊也是以化學反應熱為能源的另一種固相焊接方法。但它是利用炸*葯爆*炸所產生的能量來實現金屬連接的。在爆*炸波作用下,兩件金屬在不到一秒的時間內即可被加速撞擊形成金屬的結合。
在各種焊接方法中,爆*炸焊可以焊接的異種金屬的組合的范圍最廣。可以用爆*炸焊將冶金上不相容的兩種金屬焊成為各種過渡接頭。爆*炸焊多用於表面積相當大的平板包覆,是製造復合板的高效方法。
14.摩擦焊
摩擦焊是以機械能為能源的固相焊接。它是利用兩表面間機械摩擦所產生的熱來實現金屬的連接的。
摩擦焊的熱量集中在接合面處,因此熱影響區窄。兩表面間須施加壓力,多數情況是在加熱終止時增大壓力,使熱態金屬受頂鍛而結合,一般結合面並不熔化。
摩擦焊生產率較高,原理上幾乎所有能進行熱鍛的金屬都能摩擦焊接。摩擦焊還可以用於異種金屬的焊接。要適用於橫斷面為圓形的最大直徑為100mm的工件。
15.超聲波焊
超聲波焊也是一種以機械能為能源的固相焊接方法。進行超聲波焊時,焊接工件在較低的靜壓力下,由聲極發出的高頻振動能使接合面產生強裂摩擦並加熱到焊接溫度而形成結合。
超聲波焊可以用於大多數金屬材料之間的焊接,能實現金屬、異種金屬及金屬與非金屬間的焊接。可適用於金屬絲、箔或2~3mm以下的薄板金屬接頭的重復生產。
16.擴散焊
擴散焊一般是以間接熱能為能源的固相焊接方法。通常是在真空或保護氣氛下進行。焊接時使兩被焊工件的表面在高溫和較大壓力下接觸並保溫一定時間,以達到原子間距離,經過原子樸素相互擴散而結合。焊前不僅需要清洗工件表面的氧化物等雜質,而且表面粗糙度要低於一定值才能保證焊接質量。
擴散焊對被焊材料的性能幾乎不產生有害作用。它可以焊接很多同種和異種金屬以及一些非金屬材料,如陶瓷等。
三、焊接的優點
與其它加工方法相比,焊接有如下主要優點:
工件變形小;
生產效率高;
能耗小;
能加工異種材質;
加工柔性高;
適應性強;
大部分的焊接設備投入少等。
四、焊接的缺點
與其它加工方法相比,焊接的主要缺點如下:
對員工操作技能要求高;
與鑄造和鍛壓等常規加工方法相比,焊接後的焊縫強度相對較小;
焊接部位母材性能會產生變化,影響母材性能。