数控机床报警分为什么
A. 数控机床的故障分类有哪些
数控机床的使用寿命可分为3个阶段,而机床的故障在这3个阶段内的特点也各有不同的侧重。
1)初始使用期
从整机安装调试后,开始运行半年到一年期间,故障频率较高,一般无规律可以循。从机械角度来说,机床虽然经过了试生产的磨合,但部件装配中还存在形位误差,在机床运行的初期会引起较大的磨合磨损。从电气角度来讲,数控机床的控制系统所用的电气元件在实际运行中,由于交变电荷以及电路开、关的瞬时浪涌,电流和反电势等的冲击,使某些元器件经受不住初期的冲击,因电流或电压击穿而失效,从而引起整个机床的故障。因此,一般来说,在这个时期,电气、液压和气动系统发生故障的频率较高,为此,要加强对机床的监测,定期对机床进行机电调整,以保证设备的各个部件运行参数在技术规范之内。
2)相对稳定运行期
设备在经历了初期各个阶段的各种电气元件的老化、机械零件的磨合和调整后,开始进入相对稳定的正常运行期。此时的元器件器质性的故障较为少见,但不排除偶然发生的故障。因此,在这个时期内要坚持作好设备运行记录,以作为排除故障时的参考。相对稳定运行期较长,一般为7~10年。
3)寿命终了期
机床进入寿命终了期,各类元件开始加速磨损和老化故障率开始逐年上升,故障在这个阶段多属于渐发性和器质性的。大多数渐发性故障具有规律性,在这个时期,同样要坚持作好设备运行记录所发生的故障多数可以排除。
由于数控机床属于技术密集型和知识密集型的设备,因此对它的维护和故障诊断既要有常规的方法和手段,又有专门的技术和检测手段。故障诊断时要进行综合全面的分析和检测。
B. 在数控车床中,为什么经常出现411报警
应该是伺服报警。
处理方法:
机床断电后,在电柜中将X、Z驱动上输出回到电机答的动力线互换,电机吗盘反馈线互换;上电测试用X轴手摇看Z轴是否正常,用Z轴手摇看X轴是否正常.若故障转移到Z轴,说明X轴电机或吗盘坏。
若还是X轴伺服启动器一直显示r0 ,需机床断电后,在电柜中将X、Z驱动上输出到电机的动力线互换,电机吗盘反馈线互换,NC控制线互换;上电测试用X轴手摇看Z轴是否正常,用Z轴手摇看X轴是否正常. 若故障转移到Z轴,说明X轴驱动坏。
C. 数控机床超程报警
在数抄控机床当中超程分为硬超程和软超程两种
硬超程是指在机床安装一个极限开关,当机床在移动中碰到了硬体极限开关,机床这时会出现硬超程报警。
软超程是指在系统的参数中设定一个数值,当机床在移动时超出了参数中设定的数值,机床出现软超程报警。
机床厂家在设定的时候硬体极限离软体极限都会远一段距离,一般在10mm左右
在FANUC中软极限的设定参数是1320和1321
D. 数控机床报警代码有哪些怎么识别,怎么看,怎么处理
数控机床报警代码很多,请查阅数控机床操作说明书或者数控机床维修说明书。
报警代码一般按照类别进行分类的,比如内部错误报警和外部故障报警。
如果我的回答对您有帮助,请及时采纳为最佳答案,谢谢!
E. 数控机车的报警分为哪三种
数控系统报警(CNC报警,加工程序错误等,),伺服报警(主轴伺服,进给伺服),机床制造厂编制的PMC(PLC)报警信息(机床外围故障信息)。
F. 数控机床急停报警的原因
又没分。。。建议你检查下行程开关~
我再补充点
广数系统在突然断电情回况下,可能会答丢失坐标而导致位置错误,如果你执行正常的操作就有可能压到行程限位开关,就有可能出现急停报警
建议你同时按超程解除和复位键,报警能接触的话,再按着超程解除键把轴动回来,再重新设置软限位位置
G. 数控机床硬件报警显示的障碍
你好,很高兴能够回答你的问题
数控机床硬件报警障碍分为两种
1)硬件报警显回示的故答障。硬件报警显示通常是指各单元装置上的指示灯的报警指示。在数控系统中有许多用以指示故障部位的指示灯,如控制系统操作面板、CPU主板、伺服控制单元等部位,一旦数控系统的这些指示灯指示故障状态后,根据相应部位上的指示灯的报警含义,均可以大致判断故障发生的部位和性质,这无疑会给故障分析与诊断带来极大好处。因此维修人员在日常维护和故障维修时应注意检查这些指示灯的状态是否正常。
2)软件报警显示的故障。软件报警显示通常是指数控系统显示器上显示出的报警号和报警信息。由于数控系统具有自诊断功能,一旦检查出故障,即按故障的级别进行处理,同时在显示器上显示报警号和报警信息。
H. 数控机床故障都有哪些分类形式
一、数控机床常见故障及其分类:
1、按故障发生的部位分类
(1)主机故障数控机床的主机通常指组成数控机床的机械、润滑、冷却、排屑、液压、气动与防护等部分。主机常见的故障主要有:
1)因机械部件安装、调试、操作使用不当等原因引起的机械传动故障。
2)因导轨、主轴等运动部件的干涉、摩擦过大等原因引起的故障。
3)因机械零件的损坏、联结不良等原因引起的故障,等等。
主机故障主要表现为传动噪声大、加工精度差、运行阻力大、机械部件动作不进行、机械部件损坏等等。润滑不良、液压、气动系统的管路堵塞和密封不良,是主机发生故障的常见原因。数控机床的定期维护、保养.控制和根除“三漏”现象发生是减少主机部分故障的重要措施。
(2)电气控制系统故障从所使用的元器件类型上.根据通常习惯,电气控制系统故障通常分为“弱电”故障和“强电”故障两大类。
“弱电”部分是指控制系统中以电子元器件、集成电路为主的控制部分。数控机床的弱电部分包括CNC、PLC、MDI/CRT以及伺服驱动单元、输为输出单元等。
“弱电”故障又有硬件故障与软件故障之分.硬件故障是指上述各部分的集成电路芯片、分立电子元件、接插件以及外部连接组件等发生的故障。软件故障是指在硬件正常情况下所出现的动作出锗、数据丢失等故障,常见的有.加工程序出错,系统程序和参数的改变或丢失,计算机运算出错等。
“强电”部分是指控制系统中的主回路或高压、大功率回路中的继电器、接触器、开关、熔断器、电源变压器、电动机、电磁铁、行程开关等电气元器件及其所组成的控制电路。这部分的故障虽然维修、诊断较为方便,但由于它处于高压、大电流工作状态,发生故障的几率要高于“弱电”部分.必须引起维修人员的足够的重视。
2、按故障的性质分类
(1)确定性故障确定性故障是指控制系统主机中的硬件损坏或只要满足一定的条件,数控机床必然会发生的故障。这一类故障现象在数控机床上最为常见,但由于它具有一定的规律,因此也给维修带来了方便确定性故障具有不可恢复性,故障一旦发生,如不对其进行维修处理,机床不会自动恢复正常.但只要找出发生故障的根本原因,维修完成后机床立即可以恢复正常。正确的使用与精心维护是杜绝或避免故障发生的重要措施。
(2)随机性故障随机性故障是指数控机床在工作过程中偶然发生的故障此类故障的发生原因较隐蔽,很难找出其规律性,故常称之为“软故障”,随机性故障的原因分析与故障诊断比较困难,一般而言,故障的发生往往与部件的安装质量、参数的设定、元器件的品质、软件设计不完善、工作环境的影响等诸多因素有关。
随机性故障有可恢复性,故障发生后,通过重新开机等措施,机床通常可恢复正常,但在运行过程中,又可能发生同样的故障。
加强数控系统的维护检查,确保电气箱的密封,可靠的安装、连接,正确的接地和屏蔽是减少、避免此类故障发生的重要措施。
3、按故障的指示形式分类
(1)有报带显示的故障数控机床的故障显示可分为指示灯显示与显示器显示两种情况:
1)指示灯显示报警指示灯显示报警是指通过控制系统各单元上的状态指示灯(一般由LED发光管或小型指示灯组成)显示的报警.根据数控系统的状态指示灯,即使在显示器故障时,仍可大致分析判断出故障发生的部位与性质,因此.在维修、排除故障过程中应认真检杳这些状态指示灯的状态。
2)显示器显示报警.显示器显示报警是指可以通过CNC显示器显示出报警号和报警信息的报警。由于数控系统一般都具有较强的自诊断功能,如果系统的诊断软件以及显示电路工作正常,一旦系统出现故障,可以在显示器上以报警号及文本的形式显示故障信息。数控系统能进行显示的报警少则几十种,多则上千种,它是故障诊断的重要信息。在显示器显示报警中,又可分为NC的报警和PLC的报等两类。前者为数控生产厂家设置的故降显示,它可对照系统的“维修手册”,来确定可能产生该故障的原因。后者是由数控机床生产厂家设置的PLC报警信息文本,属于机床侧的故降显示。它可对照机床生产厂家所提供的“机床维修手册”中的有关内容,确定故障所产生的原因。
(2)无报警显示的故障这类故障发生时。机床与系统均无报警显示,其分析诊断难度通常较大,需要通过仔细、认真的分析判断才能予以确认。特别是对于一些早期的数控系统,由于系统本身的诊断功能不强,或无PLC报警信息文本,出现无报警显示的故障情祝则更多。
对于无报警显示故障,通常要具体情况具体分析,根据故障发生前后的变化进行分析判断,原理分析法与PLC程序分析法是解决无报警显示故障的主要方法。
4、按故障产生的原因分类
(1)数控机床自身故障这类故障的发生是由于数控机床自身的原因所引起的,与外部使用环境条件无关.数控机床所发生的极大多数故障均属此类故障。
(2)数控机床外部故障这类故障是由于外部原因所造成的。供电电压过低、过高,波动过大:电源相序不正确或三相输入电压的不平衡;环境温度过高:有害气体、潮气、粉尘授入:外来振动和干扰等都是引起故障的原因。
此外,人为因素也是造成数控机床故障的外部原因之一,据有关资料统计,首次使用数控机床或由不熟练工人来操作数控机床,在使用的*年,操作不当所造成的外部故障要占机床总故障的三分之一以上。
除上述常见故障分类方法外,还有其他多种不同的分类方法。如:按故障发生时有无破坏性.可分为破坏性故障和非破坏性故障两种.按故障发生与需要维修的具体功能部位,可分为数控装置故障,进给伺服系统故障,主轴驱动系统故障,白动换刀系统故障等等,这一分类方法在维修时常用。
二、数控机床故障分析的基本方法
故障分析是进行数控机床维修的第一步,通过故障分析,一方面可以迅速查明故障原因排除故障:同时也可以起到预防故障的发生与扩大的作用。一般来说,数控机床的故障分析主要方法有以下几种:
(1)常规分析法常规分析法是对数控机床的机、电、液等部分进行的常规检查,以此来判断故障发生原因的一种方法。在数控机床上常规分析法通常包括以下内容:
1)检查电源的规格(包括电压、频率、相序、容量等)是否符合要求。
2)检查CNC伺服驱动、主轴驱动、电动机、输入/输出信号的连接是否正确、可靠。
3)检查CNC伺服驱动等装置内的印刷电路板是否安装牢固,接插部位是否有松动。
4)检查CNC伺服驱动,主轴驱动等部分的设定端、电位器的设定、调整是否正确。
5)检查液压、气动、润滑部件的油压、气压等是否符合机床要求。
6)检查电器元件、机械部件是否有明显的损坏,等等。
(2)动作分析法动作分析法是通过观察、监视机床实际动作,判定动作不良部位并由此来追溯故障根源的一种方法。
一般来说,数控机床采用液压、气动控制的部位如:自动换刀装置、交换工作台装置、夹具与传输装置等均可以通过动作诊断来判定故障原因。
(3)状态分析法状态分析法是通过监测执行元件的工作状态,判定故障原因的一种方法,这一方法在数控机床维修过程中使用最广。
在现代数控系统中伺服进给系统、主轴驱动系统、电源模块等部件的主要参数都可以进行动态、静态检测,这些参数包括:输入/输出电压,输入/输出电流,给定/实际转速、位置实际的负载的晴况等。此外,数控系统全部输入/输出信号包括内部继电器、定时器等的状态,亦可以通过数控系统的诊断参数予以检查通过状态分析法,可以在无仪器、设备的情况下根据系统的内部状态迅速找到故障的原因,在数控机床维修过程中使用最广,维修人员必须熟练掌握。
(4)操作、编程分析法操作、编程分析法是通过某些特殊的操作或编制专门的测试程序段,确认故障原因的一种方法。如通过手动单步执行自动换刀、自动交换工作台动作,执行单一功能的加工指令等方法进行动作与功能的检测。通过这种方法,可以具体判定故障发生的原因与部件,检查程序编制的正确性。
(5)系统自诊断法数控系统的自诊断是利用系统内部自诊断程序或专用的诊断软件,对系统内部的关键硬件以及系统的控制软件进行自我诊断、测试的诊断方法。
I. 数控机床报警
显示英文的字面意思是:输入、输出循环时间结束,可以根据这个推理一下,我没见过这种磨床,所以不好断定是哪一部分的故障。
J. 数控车床报警
是不是电源盒啊!电源盒有输入电压和输出电压。输入电压一般是220V交流电,输出电压有直流24V、5V,还有的有!12V、-12V。首先测一下5v端电压是不是低了,如果是低的话可以调。看调了有没有效果。
调整方法:把电源盒上所有的线都拆下来,直接把电源盒取下来,并记住以前是怎么接线的(千万要记住以前是怎么接的如果接反了,会出现意想不到的情况)。然后把输入端接上220v交流电,把电表压在5v端上,调整电位器(如果是找不到的话,就看找能够看见的并且旋转的旋钮,用螺丝刀旋转即可),看电压表的变化情况,一般把电压调到5.15v就行了。然后再测一下电源盒其他输出电压是否正常。然后按照以前的接法接上去!看一下有没有效果,如果是没有效果那只能是换主板了!