当前位置:首页 » 数控仪器 » 仪器干扰怎么办

仪器干扰怎么办

发布时间: 2021-03-03 21:15:04

1. 示波器受外界干扰怎么处理

弄清楚干扰的来源、种类。采取相应的措施。

假如干扰来自外部,接地和屏蔽是你首先要做好的事。假如干扰来自市电的50Hz交流电,那么所有仪器使用同一相并一点接地,必要时使用50Hz陷波电路去除干扰。假如干扰来自探头、高阻输入部分的热噪声,那么在可能的情况下减小输入阻抗(这与为对被测电路影响小而需要提高输入阻抗相矛盾,你需要看情况权衡取舍),必要时把整个装置放入低温环境(如半导体恒温槽、干冰,甚至液氮、液氦中)。

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

2. 示波器受外界干扰的处理办法

弄清楚干扰的来源、种类。采取相应的措施。
假如干扰来自外部,接地和屏蔽是你首先回要做好的答事。假如干扰来自市电的50Hz交流电,那么所有仪器使用同一相并一点接地,必要时使用50Hz陷波电路去除干扰。假如干扰来自探头、高阻输入部分的热噪声,那么在可能的情况下减小输入阻抗(这与为对被测电路影响小而需要提高输入阻抗相矛盾,你需要看情况权衡取舍),必要时把整个装置放入低温环境(如半导体恒温槽、干冰,甚至液氮、液氦中)。

示波器是一种用途十分广泛的电子测量仪器。它能把肉眼看不见的电信号变换成看得见的图像,便于人们研究各种电现象的变化过程。示波器利用狭窄的、由高速电子组成的电子束,打在涂有荧光物质的屏面上,就可产生细小的光点(这是传统的模拟示波器的工作原理)。在被测信号的作用下,电子束就好像一支笔的笔尖,可以在屏面上描绘出被测信号的瞬时值的变化曲线。利用示波器能观察各种不同信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、调幅度等等。

3. 公司安装了信号干扰器,信号被干扰了怎么办有什么办法可以解

如何避开信号干来扰
方法一:由源于无线网络发展的速度很快,现在已经发展到4G网络,而许多公司使用的是型号比较老的信号屏蔽器,其只能屏蔽小灵通、移动、联通等2G网络,而对3G乃至现在的4G网络束手无策,破解方法:使用3G或4G卡。
方法二:波段破解法。因为公司的屏蔽器的工作原理是通过干扰指定波段的手机信号屏蔽手机的所以只要修改手机的接受发射频率就可以防止被屏蔽了,屏蔽器只屏蔽900-1800MHZ的手机信号,而手机的接受发射频率是850—1900MHZ远大于屏蔽器的屏蔽范围,所以只要在手机设置里把手机的接受发射频率调整至最大就可以正常接受到手机信号了。
方法三:WIFI破解法。这个方法对环境要求比较高,前提是周围必须有可用的无线网络。一些手机信号屏蔽器不能屏蔽WIFI信号,可以实现与外界通信。
方法四:蓝牙破解法。适合在屏蔽区域内短距离的通信,可能某些屏蔽器忽视掉蓝牙的传输功能,而没有屏蔽,所以我们只需要在手机上安装蓝牙消息软件,即可在小范围内正常通信。

4. 用什么办法可以消除外界电磁波对某些仪器的影响和干扰

静电屏蔽吧...弄一个金属网的罩子也许有用,不过计算我就帮不上忙了。

5. 干扰效应及消除方法

原子吸收光谱法的主要干扰有物理干扰、化学干扰、电离干扰、光谱干扰和背景干扰等。

5.3.2.1 物理干扰

物理干扰是指试液与标准溶液物理性质之间有差异而产生的干扰。如黏度、表面张力或溶液的密度等的变化,影响样品的雾化或气溶胶到达火焰等引起原子吸收强度的变化而引起的干扰。为了消除物理干扰可采用配制与被测试样组成相近的标准溶液或采用标准加入法的办法。若试样溶液的浓度高,还可采用稀释法。

5.3.2.2 化学干扰

化学干扰是由于被测元素原子与共存组分发生化学反应生成稳定的化合物,因而影响被测元素的原子化而引起的干扰。消除化学干扰的方法有以下几种。

(1)选择合适的原子化方法

提高原子化温度,减小化学干扰。使用高温火焰或提高石墨炉原子化温度,可使难离解的化合物分解。采用还原性强的火焰与石墨炉原子化法,可使难离解的氧化物还原、分解。

(2)加入释放剂

释放剂与干扰物质能生成比被测元素更稳定的化合物,使被测元素释放出来。例如,磷酸根干扰钙的测定,可在试液中加入镧、锶盐,镧、锶与磷酸根首先生成比钙更稳定的磷酸盐,使得钙被释放出来。

(3)加入保护剂

保护剂可与被测元素生成易分解的或更稳定的配合物,防止被测元素与干扰组分生成难离解的化合物。保护剂一般是有机配合剂,如EDTA、8-羟基喹啉。

(4)加入基体改进剂

对于石墨炉原子化法,在试样中加入基体改进剂,使其在干燥或灰化阶段与试样发生化学变化,可以增加基体的挥发性或改变被测元素的挥发性,以消除干扰。

5.3.2.3 电离干扰

在高温条件下,原子会电离,使基态原子数减少,吸光度下降,这种干扰称为电离干扰。消除电离干扰的方法是加入过量的消电离剂。消电离剂是比被测元素电离电位低的元素,相同条件下消电离剂首先电离,产生大量的电子,抑制被测元素的电离。例如,测钙时可加入过量的KCl溶液,以消除电离干扰,钙的电离电位为6.1eV,钾的电离电位为4.3 eV,由于钾电离产生大量的电子,使得钙离子得到电子而生成原子。

5.3.2.4 光谱干扰

共存元素吸收线与被测元素分析线波长很接近时,两谱线重叠或部分重叠会使结果偏高。非吸收线可能是被测元素的其他共振线与非共振线,也可能是光源中杂质的谱线,一般通过减小狭缝宽度与灯电流或另选谱线消除非吸收线的干扰。

5.3.2.5 背景干扰

背景干扰也是一种光谱干扰。分子吸收与光散射是形成光谱背景的主要因素。

(1)分子吸收与光散射

分子吸收是指在原子化过程中生成的分子对辐射的吸收。分子吸收是带状光谱,会在一定的波长范围内形成干扰。例如,碱金属卤化物在紫外区有吸收;不同的无机酸会产生不同的影响,在波长小于250nm时,H2SO4和H3PO4有很强的吸收带,而HNO3和HCl的吸收带很弱。因此,原子吸收光谱分析中多用HNO3和HCl配制溶液。

光散射是指原子化过程中产生的微小的固体颗粒使光发生散射,导致透过光减小,吸收值增加。

(2)背景校正方法

A.邻近非共振线背景校正法

背景吸收是宽带吸收。分析线测量是原子吸收与背景吸收的总吸光度AT,AT在分析线邻近选一条非共振线,非共振线不会产生共振吸收,此时测出的吸收为背景吸收AB。两次测量吸光度相减,所得吸光度值即为扣除背景后的原子吸收吸光度值A。

AT=A+AB

A=AT-AB=kc

本法适用于分析线附近背景吸收变化不大的情况,否则准确度较差。

B.连续光源背景校正法

目前原子吸收分光光度计上一般都配有连续光源自动扣除背景装置。连续光源在紫外区用氘灯;在可见区用碘钨灯、氙灯。

氘灯产生的连续光谱进入单色器狭缝,通常是原子吸收线宽度的100倍左右。氘灯对原子吸收的信号为空心阴极灯原子信号的0.5%。由此,可以认为氘灯测出的主要是背景吸收信号,空心阴极灯测的是原子吸收和背景信号,两者相减得到原子吸收值。氘灯校正法已广泛应用于原子吸收光谱仪器中,氘灯校正的波长和原子吸收波长相同,校正效果显然比非共振线法好。

氘灯校正背景是商品化仪器最普遍使用的技术,为了提高背景扣除能力,从电路和光路设计上都做了许多改进,自动化程度越来越高。

此法的缺点在于氘灯是一种气体放电灯,而空心阴极灯属于空心阴极溅射放电灯。两者放电性质不同,能量分布不同,光斑大小不同,再加上两个灯的光斑不易完全重叠,急剧的原子化又引起石墨炉中原子和分子浓度在时间和空间上的分布不均匀,因而造成背景扣除的误差。

C.塞曼效应背景校正法

1886年荷兰物理学家塞曼发现光源在强磁场作用下产生光谱线分裂的现象,这种现象称为塞曼效应。与磁场施加于光源产生的塞曼效应(称正向塞曼效应)相同,当磁场施加在吸收池时,同样可观测到吸收线的磁致分裂,即逆向塞曼效应,亦称吸收线塞曼效应。

塞曼效应按观察光谱线的方向不同又分为横向塞曼效应及纵向塞曼效应,垂直于磁场方向观察的是横向塞曼效应,平行于磁场方向观察的是纵向塞曼效应。横向塞曼效应得到三条具有线偏振的谱线,谱线的波数分别为ν-Δν、ν、ν+Δν,中间波数未变化的谱线,其电向量的振动方向平行于磁场方向,称为π成分;其他两条谱线的波数变化分别为-Δν及+Δν,其电向量的振动方向垂直于磁场方向,称为σ±成分。而纵向塞曼效应则观察到波数分别为ν+Δν和ν-Δν的两条圆偏振光,前者为顺时针方向的圆偏振称左旋偏振光,后者为反时针方向的圆偏振称右旋偏振光,而中间频率不变的π成分消失。

塞曼效应应用于原子吸收进行背景校正可有多种方法。可将磁场施加于光源,也可将磁场施加于原子化器;可利用横向效应,也可利用纵向效应;可用恒定磁场,也可用交变磁场,交变磁场又分固定磁场强度和可变磁场强度。

由于条件限制,不是以上所有组合均可应用于原子吸收光谱仪。例如:纵向恒定磁场,由于没有π成分而无法测量样品的共振吸收;施加于光源的塞曼效应在前期的研究中做了大量的工作,但由于需要的特殊光源目前也不普及,只应用于某些专用装置中。如塞曼测汞仪,因为汞灯可以制作得很小,能够获得较高的磁场强度。光源调制的另一个缺点是很难保证基线的长期稳定。目前商品化仪器应用较广的多为施加于原子化器的塞曼效应背景校正装置,主要有3种调制形式,分别为横向恒定磁场、横向交变磁场和纵向交变磁场。图5.9为三种塞曼效应背景校正装置的示意图。

图5.9 塞曼效应背景校正装置

a—横向恒定磁场;b—横向交变磁场;c—纵向交变磁场

图5.9a为横向恒定磁场装置,利用永久磁铁产生强磁场,既可以应用于火焰原子化器,也可以应用于石墨炉原子化器。

图5.9b为横向交变磁场装置,利用电磁铁产生交变磁场。为产生高强度磁场,磁场尺寸一般制作得较小,因此在石墨炉原子化器应用较广。横向磁场施加于原子化器,当原子化器中有被测元素原子蒸气时,其吸收线轮廓发生分裂(逆向塞曼效应),产生π成分及σ±成分。

利用光的矢量特性(只有偏振特性相同的光才能产生相互作用),引入旋转起偏器将光源发出的共振辐射变成线偏振光。假定磁场方向平行于纸面,当旋转起偏器转动到共振辐射偏振特性平行于纸面时,形成样品光,测量分析原子吸收及背景吸收,因为原子吸收线的π成分的偏振特性与其相同,产生分析原子吸收;当旋转起偏器转动到共振辐射偏振特性垂直于纸面时,形成参考光,测量背景吸收,因为原子吸收线的σ±成分与参考光的波长不同,不产生吸收,π成分的偏振特性与参考光不同,也不产生样品吸收,而背景吸收通常是宽带的,不产生塞曼分裂,对样品及参考光束的吸收相同,两个光束产生的吸光度相减即得净分析原子吸收产生的吸光度,这是横向塞曼效应校正背景的原理。

由于旋转起偏器的加入,光源的光强至少减少50%,吸收线塞曼分裂的产生也对共振光的吸收减弱,因此这种背景校正装置的主要不足之处就是灵敏度损失。

图5.9c为纵向交变磁场装置,由于纵向塞曼效应没有π成分产生,也不需要旋转起偏器,因此很好地解决了校正背景与灵敏度损失的矛盾。

为实施纵向塞曼效应,美国Perkin-Elmer公司对石墨炉体结构进行了改造,改纵向加热石墨管为横向加热石墨管,改横向磁场为纵向磁场,生产了4100ZL型横向加热纵向塞曼效应原子吸收光谱仪,并在其最新的Aanalyst800及SIMAA6100等仪器上推广应用,取得了很好的效果。

背景校正装置的一个主要缺点是比常规仪器的线性动态范围小、灵敏度低。为克服线性动态范围小的缺点,德国Jena公司开发了一种3磁场塞曼效应背景校正技术,可使测量的线性动态范围扩充一个数量级。澳大利亚GBC科学仪器公司的Avanta UltraZ原子吸收分光光度计磁场强度为0.6~1.1 T(1T=1V·s·m-2),可以任意设定,对不同元素的不同背景干扰使用不同的磁场强度,可有效地提高仪器的灵敏度和测试精度。

6. 我的内心被别人用仪器干扰,乱了规律…现在狠崩溃,心理想法成了他们的对话机…我该怎么办

这是一种被害妄想。就目前来讲,还没有能干扰人思维的仪器存在,你那种感觉其实是一中错觉,不把它当回事,反而会没事。

7. 医学仪器 被干扰怎么消除

你是设备厂家吗? 如果是可以从设备本身入手,增加设备的抗扰度,可以增加滤波器,具体产品可以通过如下字的手机号和我联系。

8. 信号干扰器怎么破

1、寻找屏蔽位置 寻找干扰波不能干扰或干扰小的位置,即干扰死角。干扰波和卫星波都是直线波,行进途中遇到障碍物都会被反射,但这两种电波的区别在于,干扰波的场强大于卫星波数千万倍,致使遇到障碍物及建筑物后会四处反射,而卫星波如没有被天线所反射则易被地表所吸收。

寻找屏蔽位置最简单的方法是降低天线高度,利用四周自然物体避开周围的强微波干扰信号,如:放在院子中要比放在屋顶上效果好;也可在地面上挖一个边长为2mx2m的深方坑,深度可以根据情况自行掌握,原则是越深越好,但要注意天线前方(正南方向)不要被土遮挡,将天线置于坑底也就是说天线接收信号时不能被坑高遮挡;还可将天线移至建筑物另一面,利用建筑物来遮挡来自该方向的干扰源。

2、安装防干扰装置 卫星干扰信号是从地面来的,而卫星信号来自天空。只要把地面的卫星干扰信号屏蔽掉就OK了。用铁皮或者铁丝网给卫星天线做个围墙,不挡住卫星信号但能挡住干扰信号,即可避免干扰。判断出干扰波的来源方位,在天线的一侧或多侧架设金属板(网)遮挡干扰波。金属板(网)架设高度需超过高频头,且不能挡到卫星信号的行进路线。

由于C波段信号波长在71.4mm、88.2mm之间,如果采用金属网屏蔽干扰波,为防止干扰源漏进金属网,网孔孔径应小于最短波长71.4mm的1/4,即小于17.85mm。干扰不太严重的话,也可在天线的外沿,垂直于锅口平面,加一圈宽度为10~20cm的金属带。当然,金属带宽度越宽抗干扰性能也就越强,不过一锅多星的天线不宜采用此法,它会遮挡非垂直于锅面的卫星信号接收。

3、转星或换Ku头接收Ku波段信号 如果所要接收的信号,在其他卫星的C波段上也能够接收到,可转星接收,改变接收天线的方向,看看能否避开干扰波的干扰区域;另外也可转星或换Ku头接收Ku波段信号来避免干扰。这是最直接、最有效的方法。

9. 电子仪器抗干扰问题

使用带有屏蔽层的线路,该接地线的设备要接地线
抗干扰接地处理的主要内容:(1)避开地环电流的干扰;(2)降低公共地线阻抗的耦合干扰。

“一点接地”有效地避开了地环电流;而在“一点接地”前提下,并联接地则是降低公共地线阻抗的耦合干扰的有效措施;它们是工业控制系统采用的最基本的接地方法。

工业控制系统接地的含义不一定就是接大地。例如直流接地只是定义电路或系统的基准电位。它可以悬浮,但要求与大地严格绝缘。通常,其绝缘电阻要达到50 MΩ以上。直流地悬浮隔离了交流地网的干扰,经济简便,工程中经常使用。直流地悬浮的缺点是机器容易带静电,如果该静电电位过高,会损坏器件,击伤操作人员等等;而且,如果这时直流地与大地的绝缘电阻减小,可能会产生很多原先没有想到的干扰。直流地接大地,按照国家标准,要埋设一个不大于4 Ω的独立接地体。但无论直流地悬浮或者接大地,直流地与大地之间的电位都存在着间接或者直接的关系。工业控制机所操作的各种输入输出信号之间接地是否合理,不只是形成相互耦合干扰的问题,有时还危及计算机系统的安全。在实际的工业控制系统中,各种通道的信号频率大多在1MHz内,属于低频范围。因此,谈谈低频范围的接地。

1. 串联接地

在串联接地方式中,各电路各有一个电流i1、i2、i3等流向接地点。由于地线存在电阻,因此,每个串联接点的电位不再是零,于是各个电路间相互发生干扰。尤其是强信号电路将严重干扰弱信号电路。如果必须要这样使用,应当尽力减小公共地线的阻抗,使其能达到系统的抗干扰容限要求。串联的次序是:最怕干扰的电路的地应最接近公共地,而最不怕干扰的电路的地可以稍远离公共地。

2. 并联接地

并联接地方式:在工业控制机中的模拟通道和数字通道采用并联接地。并联接地中各个电路的地电位只与其自身的地线阻抗和地电流有关,互相之间不会造成耦合干扰。因此,有效地克服了公共地线阻抗的耦合干扰问题,工业控制机应当尽量采用并联接地方式。值得注意的是,虽然采用了并联接地方式,但是地线仍然要粗一些,以使各个电路部件之间的地电位差尽量减小。这样,当各个部件之间有信号传送时,地线环流干扰将减小。

工业现场的干扰来源是多渠道的,针对不同的项目和不同的现场,应该有不同的处理方法。屏蔽和接地是由工控系统开发者操作的一项技术内容。能否正确设计和利用它们,不仅关系到系统安全稳定地运行、良好地抑制干扰,而且是工控项目开发者是否成熟的重要标志。

工控系统的屏蔽处理

工业现场动力线路密布,设备启停运转繁忙,因此存在严重的电场和磁场干扰。而工业控制系统又有几十乃至几百个甚至更多的输入输出通道分布在其中,导线之间形成相互耦合是通道干扰的主要原因之一。它们主要表现为电容性耦合、电感性耦合、电磁场辐射三种形式。在工业控制系统中,由前两种耦合造成的干扰是主要的,第三种是次要的。它们对电路主要造成共模形式的干扰。

众所周知,地球是一个静电容量很大的导体,其电位非常恒定。如果把一个导体与大地紧密连接,那么该导体的电位也是恒定的。我们把它的电位叫作零电位,它是电位的参考点。然而,工程上不可能做到这种紧密连接,总是存在一定的接地电阻。当有电流经该导体入地时,它的电位就有波动。于是,不同的接地点之间会有电位差。当我们用一根导线连接不同的接地点时,在导线中就可能有电流流动,这称为地环电流。接地抗干扰技术就是解决以地环电流为中心的一系列技术问题。

1. 电场耦合的屏蔽和抑制技术

克服电场耦合干扰最有效的方法是屏蔽。因为放置在空心导体或者金属网内的物体不受外电场的影响。请注意,屏蔽电场耦合干扰时,导线的屏蔽层最好不要两端连接当地线使用。因在有地环电流时,这将在屏蔽层形成磁场,干扰被屏蔽的导线。正确的作法是把屏蔽层单点接地,一般选择它的任一端头接地。造成电场耦合干扰的原因是两根导线之间的分布电容产生的耦合。当两导线形成电场耦合干扰时,导线1在导线2上产生的对地干扰电压VN为:V1和ω是干扰源导线1的电压和角频率;R和C2G是被干扰导线2的对地负载电阻和总电容;C12是导线1和导线2之间的分布电容。从式(2)可以看出,在干扰源的角频率ω不变时,要想降低导线2上的被干扰电压VN ,应当减小导线1的电压V1,减小两导线之间的分布电容C12,减小导线2对地负载电阻R以及增大导线2对地的总电容C2G。在这些措施中,可操作性最好的是减小两导线之间的分布电容C12。即采用远离技术:弱信号线要远离强信号线敷设,尤其是远离动力线路。工程上的“远离”概念,通常取干扰导线直径的40倍,即认为足够了。同时,避免平行走线也可以减小C12。

2. 磁场耦合的抑制技术

抑制磁场耦合干扰的好办法应该是屏蔽干扰源。大电机、电抗器、磁力开关和大电流载流导线等等都是很强的磁场干扰源。但把它们都用导磁材料屏蔽起来,在工程上是很难做到的。通常是采用一些被动的抑制技术。当回路1对回路2造成磁场耦合干扰时,其在回路2 上形成的串联干扰电压VN为:

VN=jωBAcosθ (3) ,式中,ω是干扰信号的角频率;B是干扰源回路1形成的磁场链接至回路2处的磁通密度;A为回路2感受磁场感应的闭合面积,θ是和两个矢量的夹角。可以看出,在干扰源的角频率ω不变时,要想降低干扰电压VN,首先应当减小B。对于直线电流磁场来说,B与回路1流过的电流成正比,而与两导线的距离成反比。因此,要有效抑制磁场耦合干扰,仍然是远离技术。同时,也要避免平行走线。

3. 屏蔽线的使用

屏蔽线的接地有三种情况,即:单端接地方式、两端接地方式、屏蔽层悬浮。(1)单端接地方式:假设信号电流i1从芯线流入屏蔽线,流过负载电阻RL之后,再通过屏蔽层返回信号源。因为i1与i2大小相等方向相反,所以它们产生的磁场干扰相互抵消。这是一个很好的抑制磁场干扰的措施。同时它也是一个很好的抵制磁场耦合干扰的措施。(2)两端接地方式:由于屏蔽层上流过的电流是i2与地环电流iG的迭加,所以它不能完全抵消信号电流所产生的磁场干扰。因此,它抑制磁场耦合干扰的能力也比单端接地方式差。单端接地方式与两端接地方式都有屏蔽电场耦合干扰作用。(3)屏蔽层悬浮:只有屏蔽电场耦合干扰能力,而无抑制磁场耦合干扰能力。

4 . 双绞线的使用

如果双绞线的绞扭一致的话,那么这些小回路的面积相等而法方向相反,因此,其磁场干扰可以相互抵消。双绞线的结构对电场耦合干扰的抑制毫无能力。当给双绞线加上屏蔽层后,一个价廉物美的传输线就诞生了。根据国外专家的实验测定,屏蔽层接地方法不同对磁场干扰的抑制dB数也不同。(1)单端接地方式,对磁场干扰具有高达55dB的衰减能力。可见,双绞线确实有很好的效果。(2)两端接地方式,地线阻抗与信号线阻抗不对称,地环电流造成了双绞线电流不平衡,因此降低了双绞线抗磁场干扰的能力,只有13dB的磁场干扰衰减能力。(3)使用屏蔽双绞线,其屏蔽层一端接地,另一端悬空,因此屏蔽层上没有返回信号电流,所以它的屏蔽层只有抗电场干扰能力,而无抑制磁场耦合干扰能力。与单端接地方式一样衰减55dB。(4)屏蔽层单端接地,而另一端又与负载冷端相连,因此它具有两端接地方式的效果,但它的屏蔽层上的电流由于被双绞线中的一根分流,又比两端接地方式稍差。具有77dB的衰减。(5)屏蔽层双端接地,具有一定的抑制磁场耦合干扰能力,加上双绞线本身的作用,因此具有63dB的衰减。(6)屏蔽层和双绞线都两端接地,其效果具有28dB衰减。

双绞线最好的应用是作平衡式传输线路。因为两条线的阻抗一样,自身产生的磁场干扰或外部磁场干扰都可以较好的抵消。同时,平衡式传输又独具很强的抗共模干扰能力,因此成为大多数计算机网络的传输线。例如,物理层采用RS422A或RS485通信接口,就是很好的平衡传输模式。

10. 如果在使用功率分析仪进行测试时遇到干扰怎么办

常见的抗干扰技术有以下几种,在使用功率分析仪测试遇到干扰时,也主专要按照一下思属路来解决异常。
屏蔽:
当干扰相对较大时,请考虑使用具有良好屏蔽性能的同轴电缆。
滤波:
选择合适的滤波装置,或者在设备上设置合适的滤波条件。
接地:
接地技术相对复杂,但在强弱系统中,接地是一种更好的屏蔽干扰技术。 (具体的接地方法和听下一次分解)
当然,如果您使用更新的功率分析仪,有一些设置可以帮助消除干扰信号。例如,PA系列功率分析仪可以通过在测试电机机械信号时设置阈值电平来阻挡一些小干扰信号,并且更方便识别脉冲信号的频率值。
总之,在电参数测试的复杂环境中,如果要求仪器的“抗干扰”更强,则应更加注意设置,屏蔽技术和滤波技术。

热点内容
线切割怎么导图 发布:2021-03-15 14:26:06 浏览:709
1台皮秒机器多少钱 发布:2021-03-15 14:25:49 浏览:623
焊接法兰如何根据口径配螺栓 发布:2021-03-15 14:24:39 浏览:883
印章雕刻机小型多少钱 发布:2021-03-15 14:22:33 浏览:395
切割机三五零木工貝片多少钱 发布:2021-03-15 14:22:30 浏览:432
加工盗砖片什么榉好 发布:2021-03-15 14:16:57 浏览:320
北洋机器局制造的银元什么样 发布:2021-03-15 14:16:52 浏览:662
未来小七机器人怎么更新 发布:2021-03-15 14:16:33 浏览:622
rexroth加工中心乱刀怎么自动调整 发布:2021-03-15 14:15:05 浏览:450
机械键盘的键帽怎么选 发布:2021-03-15 14:15:02 浏览:506