数控车床精度怎么调
⑴ 数控机床精度降低了怎么办
数控车床精度主要体现在:主轴跳动.刀塔精度两方面
可以用主轴千分表测量主轴精度、版刀塔两项精度;跳权动、圆度精度不合格的通过主轴卡头重新装配或车卡头来实现精度调整;X、Z 轴精度可通过刀塔后方电机及刀塔装配位置调整;重复定位精度不合格通过调整丝杠和丝杠母间隙
⑵ 数控车床批量加工怎么调精确度
狠简单啊,前提是床抄子精确度得高,如果床子不稳定,那么不论你如何调整都没办法,如果床子精确度高,您可以采取以下措施,保证工件的精确度,1 经常测量工件,如果尺寸不变,那么可以继续工作,如果变了,那么就可以在数控的刀补上调整,2 批量大的话就得经常看刀头的磨损程度,如果刀头磨损大的话就会直接影响尺寸,批量大,建议您直接使用数控挤压刀头,可调式车刀,3 如果是钢结构工件就得保证冷却液正常冷却,如果冷却不及时第一会加大刀头的磨损程度,第二如果过热也会影响尺寸,热胀冷缩嘛!希望能帮到你,
⑶ 请教数控车床精度问题
朋友 他们说的毛病都有可能存在 你为啥不选择粗车和精车呢 你精车找把好刀 留下直径30丝 怎么车都很容易达到你的精度的 而且长时间不用调精车刀 不容易做废工件
⑷ 数控车床精度如何调节及维修
按普通车床的精度调整方法调整就行,机械部分的原理和普通车床是一样的。
⑸ 如何提高数控车床的精度!
这个说起来花酒多了!机床精度是和机床抄作工人有很大关系!机床保养的好精度自然就好!内如果容现在精度不够的花可以在数控系统里面调节一下反响间隙!各轴丝杆与螺母间隙!处理办法是换钢球,螺母与螺母之间加铜皮!各轴的压板和相条不要太紧!这样会使机床加速磨损!还有明白的397636316加我!问答: 机电
⑹ 数控车圆弧如何调试精度
加工程序里使用刀尖圆弧半径补偿功能
G41
/
G42
,刀补形状参数里正确设置刀尖圆弧R和刀位点T,然后按理论值编程就可以了。还有看看是不是粗加工产生过切了,如果是粗加工时多留点余量。
⑺ 数控车床转刀台精度怎么调整
换个新刀台就没什么问题了。
⑻ 如何进行数控车床的精度调整
数控车床抄精度主要体现在:主轴袭跳动.刀塔精度两方面
可以用主轴千分表测量主轴精度、刀塔两项精度;跳动、圆度精度不合格的通过主轴卡头重新装配或车卡头来实现精度调整;X、Z 轴精度可通过刀塔后方电机及刀塔装配位置调整;重复定位精度不合格通过调整丝杠和丝杠母间隙或更换丝杠和轴承;
⑼ 如何提高数控车床加工精度
反向偏差在数控机床上,由于各坐标轴进给传动链上驱动部件(如伺服电动机、伺服液压马达和步进电动机等)的反向死区、各机械运动传动副的反向间隙等误差的存在,造成各坐标轴在由正向运动转为反向运动时形成反向偏差,通常也称反向间隙或失动量。对于采用半闭环伺服系统的数控机床,反向偏差的存在就会影响到机床的定位精度和重复定位精度,从而影响产品的加工精度。如在G01切削运动时,反向偏差会影响插补运动的精度,若偏差过大就会造成圆不够圆,方不够方的情形;而在G00快速定位运动中,反向偏差影响机床的定位精度,使得钻孔、镗孔等孔加工时各孔间的位置精度降低。同时,随着设备投入运行时间的增长,反向偏差还会随因磨损造成运动副间隙的逐渐增大而增加,因此需要定期对机床各坐标轴的反向偏差进行测定和补偿。定位精度数控机床的定位精度是指所测量的机床运动部件在数控系统控制下运动所能达到的位置精度,是数控机床有别于普通机床的一项重要精度,它与机床的几何精度共同对机床切削精度产生重要的影响,尤其对孔隙加工中的孔距误差具有决定性的影响。一台数控机床可以从它所能达到的定位精度判出它的加工精度,所以对数控机床的定位精度进行检测和补偿是保证加工质量的必要途径。
⑽ 数控机床精度怎么选择才合适
数控机床典型零件的关键部位加工精度要求决定了选择数控机床的精度等级。数控机床根据用途又分为简易型、全功能型、超精密型等,其能达到的精度也是各不一样的。简易型目前还用于一部分车床和铣床,其最小运动分辩率为0.01mm,运动精度和加工精度都在(0.03~0.05)mm以上。超精密型用于特殊加工,其精度可达0.001mm以下。这里主要讨论应用最多的全功能数控机床(以加工中心为主)。
按精度可分为普通型和精密型,一般数控机床精度检验项目都有20~30项,但其最有特征项目是:单轴定位精度、单轴重复定位精度和两轴以上联动加工出试件的圆度。
定位精度和重复定位精度综合反映了该轴各运动部件的综合精度。尤其是重复定位精度,它反映了该轴在行程内任意定位点的定位稳定性,这是衡量该轴能否稳定可靠工作的基本指标。目前数控系统中软件都有丰富的误差补偿功能,能对进给传动链上各环节系统误差进行稳定的补偿。例如,传动链各环节的间隙、弹性变形和接触刚度等变化因素,它们往往随着工作台的负载大小、移动距离长短、移动定位速度的快慢等反映出不同的瞬时运动量。在一些开环和半闭环进给伺服系统中,测量元件以后的机械驱动元件,受各种偶然因素影响,也有相当大的随机误差影响,如滚珠丝杠热伸长引起的工作台实际定位位置漂移等。总之,如果能选择,那么就选重复定位精度最好的设备!
铣削圆柱面精度或铣削空间螺旋槽(螺纹)是综合评价该机床有关数控轴(两轴或三轴)伺服跟随运动特性和数控系统插补功能的指标,判断方法是测量加工出圆柱面的圆度。在数控机床试切件中还有铣斜方形四边加工法,也可判断两个可控轴在直线插补运动时的精度。在做这项试切时,把用于精加工的立铣刀装到机床主轴上,铣削放置在工作台上的圆形试件,对中小型机床圆形试件一般取在Ф200~Ф300,然后把切完的试件放到圆度仪上,测出其加工表面的圆度。铣出圆柱面上有明显铣刀振纹反映该机床插补速度不稳定;铣出的圆度有明显椭圆误差,反映插补运动的两个可控轴系统增益不匹配;在圆形表面上每一可控轴运动换方向的点位上有停刀点痕迹(在连续切削运动中,在某一位置停止进给运动刀具就会在加工表面上形成一小段多切去金属的痕迹)时,反映该轴正反向间隙未调整好。
单轴定位精度是指在该轴行程内任意一个点定位时的误差范围,它可以直接反映了机床的加工精度能力,所以是数控机床最关键技术指标。目前全世界各国对这指标的规定、定义、测量方法和数据处理等有所不同,在各类数控机床样本资料介绍中,常用的标准有美国标准(NAS)和美国机床制造商协会推荐标准、德国标准(VDI)、日本标准(JIS)、国际标准化组织(ISO)和我国国家标准(GB)。在这些标准中规定最低的是日本标准,因为它的测量方法是使用单组稳定数据为基础,然后又取出用±值把误差值压缩一半,所以用它的测量方法测出的定位精度往往比用其他标准测出的相差一倍以上。
另外几种标准尽管处理数据上有所区别,但都反映了要按误差统计规律来分析测量定位精度,即对数控机床某一可控轴行程中某一个定位点误差,应该反映出该点在以后机床长期使用中成千上万次在此定位的误差,而我们在测量时只能测量有限次数(一般5~7次)。
数控机床的精度比较难判断,有的需要加工后才能判断,所以这一步比较困难。