加工蜗杆前画线步骤是什么
Ⅰ 蜗杆是怎么加工的
蜗杆轴的主要加工表面是外圆表面,也还有常见的特特形表面,因此针对各种精度等级和表面粗糙度要求,按经济精度选择加工方法。
毛坯及其热处理—预加工—车削外圆—铣键槽—(花键槽、沟槽)—热处理—磨削—终检。
1、蜗杆轴的预加工
轴类零件的预加工是指加工的准备工序,即车削外圆之前的工艺。
校直:毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量均匀及装夹可靠,一般冷态下在各种压力机或校值机上进行校直。
2、蜗杆轴加工的定位基准和装夹
以工件的中心孔定位在轴的加工中,零件各外圆表面,锥孔、螺纹表面的同轴度,端面对旋转轴线的垂直度是其相互位置精度的主要项目,这些表面的设计基准一般都是轴的中心线,若用两中心孔定位,符合基准重合的原则。
中心孔不仅是车削时的定为基准,也是其加工工序的定位基准和检验基准,又符合基准统一原则。当采用两中心孔定位时,还能够最大限度地在一次装夹中加工出多个外圆和端面。
以外圆和中心孔作为定位基准用两中心孔定位虽然定心精度高,但刚性差,尤其是加工较重的工件时不够稳固,切削用量也不能太大。粗加工时,为了提高零件的刚度,可采用轴的外圆表面和一中心孔作为定位基准来加工。这种定位方法能承受较大的切削力矩,是轴类零件最常见的一种定位方法。
以两外圆表面作为定位基准在加工空心轴的内孔时,不能采用中心孔作为定位基准,可用轴的两外圆表面作为定位基准。当工件是机床主轴时,常以两支撑轴颈(装配基准)为定位基准,可保证锥孔相对支撑轴颈的同轴度要求,消除基准不重合而引起的误差。
以带有中心孔的锥堵作为定位基准在加工空心轴的外圆表面时,往往还采用代中心孔的锥堵或锥套心轴作为定位基准。
(1)加工蜗杆前画线步骤是什么扩展阅读:
蜗杆种类:
根据不同的齿廓曲线,普通圆柱蜗杆可分为
阿基米德蜗杆(ZA蜗杆)
渐开线蜗杆(ZI蜗杆)
法向直廓蜗杆(ZN蜗杆)
和锥面包络圆柱蜗杆
参考资料来源:网络-蜗杆
Ⅱ 蜗轮蜗杆的加工方法
看你的精度要求,抄以及蜗杆的压力角等参数,可以使用:
- 专用铣床
我们公司所使用的是专用的铣床加工,例如德国的KOEPFER,瑞士的LAMBERT。此类设备为专业的蜗杆加工机床,精度可以保证在DIN6级。国产的可以考虑宁江的专业铣床(为购买LAMBERT的专利技术)。
- 滚压成型
主要看蜗杆参数是否适合使用此方法,精度个人认为会比专用铣床略差。
- 旋风铣
欧洲有专业的,国内也有改装的。旋风铣在欧洲其实一般用于生产医用骨钉,而不是蜗杆。个人认为蜗杆的精度要求是比骨钉要高的,蜗杆主要用于传动,骨钉用于固定。
- 车床
没有实际使用过,但是很怀疑其所能达到的精度。
Ⅲ 关于蜗杆的加工方法的请教
普通圆柱蜗杆若用直线切削刃在车床上加工,按刀具安装位置不同,切出的蜗杆又可分为阿基米德蜗杆(ZA)、渐开线蜗杆(ZI)和法向直廓蜗杆(ZN)等。 ZA阿基米德蜗杆 车刀刀刃平面通过蜗杆轴线,车刀切削刃夹角2α=40° 切出的蜗杆,在轴平面上具有直线齿廓,法向剖面齿廓为外凸曲线。而端面上的齿廓曲线为阿基米德螺旋线,故称为阿基米德蜗杆。这种蜗杆加工和测量都比较方便,故应用广泛。但导程角γ过大时加工困难。难以用砂轮磨削出精确齿形,故传动精度和传动效率较低。 ZI渐开线蜗杆 车刀切削刃平面与蜗杆的基圆柱相切,被切出的蜗杆在轴平面上具有凸廓曲线,而在垂直于轴线的端面上的齿廓为渐开线,故称为渐开线蜗杆。这种蜗杆可以磨削(见下附德文原版pdf资料),故传动精度和传动效率较高,适用于成批生产和大功率、高速精密传动。 ZN法向直廓蜗杆 当蜗杆导程角 γ较大时,为了使车刀获得合理的前角和后角,车制时车刀刀刃平面放在蜗杆螺旋线的法平面上,这样切出的蜗杆,在法向剖面上齿廓为直线,故 称为法向直廓蜗杆。而在垂直于轴线的端面上的齿廓曲线为延伸渐开线,因而又称为延伸渐开线蜗杆。这种蜗杆切削性能较好,有利于加工多头蜗杆,且可用砂轮磨齿,常用于机床的多头精密蜗杆传动。 随着技术和产品要求的进步,需要切削速度进一步提高,车削法产生了瓶颈,于是出现了旋风铣。即用旋转的刀具来提高切削线速度(可达每分钟400米),工件则无须高速旋转。 蜗杆的旋风铣加工方法分两种,内旋风whirling和外旋风milling. 内旋风:工件圆周与刀牙圆周内切(蜗杆在刀盘内部) 精度可达DIN7 Ra0.8 外旋风:工件圆周与刀牙圆周外切(蜗杆在刀盘外部) 精度可达DIN6 Ra0.4
Ⅳ 急求蜗杆加工方法
不如找个设计工程师回去,这样谁会告诉你那么专业的问题的啊。
。
Ⅳ 数控车床车蜗杆加工的程序
建议你先把蜗杆的各部分的数值算清楚; 比如大径; 轴向齿厚;法向齿回厚;车削深度; 刀具答的螺旋生角的角度。算清楚。
最好的方法就是用G92程序。 因为稳定。 加工时间短。
分层走到; 比如大径50 先车削到47 ; 然后该边Z轴。 逐渐车削到指定的尺寸。 用这种方法是最稳定的。
还有就是用G76 但是跟G92没差多少。 而且G76不稳定。 容易乱扣。
还有就是用子程序;后是宏程序。 这两种方法不建议你用。
Ⅵ 请问蜗杆的加工方法
单件可以车削,批量大的话可以用铣削,滚齿机也可以加工,旋风铣。
与普通螺纹角度和牙高计算是不一样的,你可以看看机械设计手册。
Ⅶ 蜗杆加工的最好方法
高精度的蜗杆加工时比较困难的,如果你是普通传动的话可以选择车床,高精度主要取决于钢材和处理的技术,我用蜗杆一般都是选择日本KHK的,因为我们的精度要求很高
Ⅷ 蜗杆轴加工基本加工路线是什么
蜗杆轴加工基本加工路线:
外圆加工的方法很多,基本加工路线可归纳为四条内。
①粗车—半容精车—精车
对于一般常用材料,这是外圆表面加工采用的最主要的工艺路线。
②粗车—半精车—粗磨—精磨
对于黑色金属材料,精度要求高和表面粗糙度值要求较小、零件需要淬硬时,其后续工序只能用磨削而采用的加工路线。
③粗车—半精车—精车—金刚石车
对于有色金属,用磨削加工通常不易得到所要求的表面粗糙度,因为有色金属一般比较软,容易堵塞沙粒间的空隙,因此其最终工序多用精车和金刚石车。
④粗车—半精—粗磨—精磨—光整加工
对于黑色金属材料的淬硬零件,精度要求高和表面粗糙度值要求很小,常用此加工路线。
Ⅸ 数控车床车蜗杆怎么编程序
T01 为35度左右粗车刀(白刚刀或硬质合金)
T02 为35左右精车刀(硬质合金)
最快不到10分钟
要是用白刚刀粗车
不到20分钟
cot=20°=1:0.364,既当X方向进给0.1mm时,Z向比上一刀变化0.0364mm,这个0.0364mm是左右方向上的,即先从中间吃一刀,然后左右分别比上一刀的Z向减少及增加0.0364mm,可以先列出如下表所示的数值,以利编程时使用。
N110GOOX55Z10快速定位到车螺纹起点 、N120G92X49.8Z-60F8 车X49.8处第一刀 、N130GO1W-1.42F1改变车螺纹的起点 、N140G92X49.8Z-60F8车左边 、N150G01Z10F1回到起点 。
N160W1.42改变车螺纹的起点 、N170G92 X49.8Z-60F8 车右边 、N180G01Z10F1回到Z向起点 、N190G92X49.6Z-60F8车X49.6处第一刀。
(9)加工蜗杆前画线步骤是什么扩展阅读:
数控机床编程的主要内容
分析零件图样、确定加工工艺过程、进行数学处理、编写程序清单、制作控制介质、进行程序检查、输入程序以及工件试切。
数控机床的步骤
分析零件图样和工艺处理,根据图样对零件的几何形状尺寸,技术要求进行分析,明确加工的内容及要求,决定加工方案、确定加工顺序、设计夹具、选择刀具、确定合理的走刀路线及选择合理的切削用量等。
同时还应发挥数控系统的功能和数控机床本身的能力,正确选择对刀点,切入方式,尽量减少诸如换刀、转位等辅助时间。
数学处理
编程前,根据零件的几何特征,先建立一个工件坐标系,数控系统的功能根据零件图纸的要求,制定加工路线,在建立的工件坐标系上,首先计算出刀具的运动轨迹。
对于形状比较简单的零件(如直线和圆弧组成的零件),只需计算出几何元素的起点、终点、圆弧的圆心、两几何元素的交点或切点的坐标值。
编写零件程序清单
加工路线和工艺参数确定以后,根据数控系统规定的指定代码及程序段格式,编写零件程序清单。
Ⅹ 普通车床加工蜗杆的方法
如今伴随着数控车削工艺的盛行,操作起来更加方便,操作效率更高,节省劳动力,但在精车时也有一定的难度,且对刀也没有专用车床快捷,且相较于专用车床其操作性也较差,同时还存在一些不可预见性的问题,使得操作起来非常困难且很难控制,故始终无法完全取代普通车床加工,该文结合蜗杆的结构特点,通过对车削蜗杆加工的技术难点进行分析,并结合大模数蜗杆和多线蜗杆的加工技巧分析,旨在探讨保证蜗杆质量的同时,提高车削速度和技术的方法。
中国论文网 http://www.xzbu.com/1/view-5660053.htm
关键词:普通车床 车削蜗杆 加工技巧
中图分类号:fG511 文献标识码:A 文章编号:1674-098X(2014)01(c)-0135-01
在对蜗杆进行车削加工时,由于线数相对较多且模数相对较大,所以在加工的时候会遇到很多的困难,多线和大模数的蜗杆的mx通常保持在3 mm以上,若需要进行大切削深度或大走刀的强力切削,势必对夹具、机床或操作技术都提出了非常高的要求,且切削时掌握起来也非常难[1]。鉴于此,本文重点对大模数蜗杆和多线蜗杆的车削技巧以及工艺重难点进行探讨,分析通过有效措施,在保证质量的同时能够大大提高车削技术和操作效率。
1 车削蜗杆的技术难点
1.1 螺旋升角对车刀侧刃后角的影响
在车削蜗杆加工的过程中,由于螺旋升角的问题,故非常左右切削的基面和平面位置,使得在进行车刀操作时其前后角与静止时前后脚之间存在较大的误差,如图1。
1.2 螺旋升角对车刀两侧前角的影响
车削蜗杆加工时,当出现螺旋升角时,使得基面位置因此出现变化,进而导致静止前角与车刀两侧前角的角度数值出现变化,进而导致两者之间出现误差,若车道两侧切削刃均为0 °,那么切削过程就非常容易(如图2)。因蜗杆的牙槽非常深且较宽,故在加工时,往往通过左右分层车削的方式来进行处理,例如:在切削加工中,当工作前角成为负前角,这就加大了切削难度,同时也使得排屑工作受到了较大影响,特别在遇到螺旋升角较大的情况时,该问题更为突出。为了使上述情况得到有效改善,应在刃磨粗车刀时,对车道两侧前角以及排屑进行充分考虑,使切削右侧面的车刀工作前角尽可能趋近于0 °,以便于切削和排屑操作的开展(如图3)。
2 车削蜗杆的工艺分析
在普通车床上进行车削蜗杆的加工,车床必须保持非常充足的刚性,同时刀具也应以强度适合的为最佳,由于蜗杆牙齿相对来说较深,故保证工件的刚性也非常重要,可通过一端夹一端的方式来进行工件的安装,工件表面则应当采用薄铜片进行包裹,再运用三爪自定心卡盘将其夹紧。而在对刀前则应对中滑板的间歇、床鞍以及小滑板的间歇进行调整,在刃磨车刀时,需注意螺旋升角对车刀角度所造成的影响。刃磨精车刀进行时,需对刃磨两把车刀分别对左右两侧面进行车削,例如:精车右侧面车刀可将其刃磨为20 °前角,而左侧面车刀则可将其刃磨为15 °的前角,这就解决了切削和排屑的难题,同时也可大大提高左右侧面工作前角的一致性,尤其是遇到蜗杆螺旋升角较大的情况时,其给车削加工前后角造成的影响更大,主要是由于车削加工的过程中,螺旋升角使得车刀沿进给方向一侧的后角逐渐变小,故导致另一侧的后角不断变大,要控制该情况,就应当尽可能地控制牙侧和车刀后面受到干涉,使切削开展更加顺利,让车刀沿进给方向一侧的后角加上螺旋升角,与此同时,要保证车刀强度,则应对车刀背着进给方向一侧的后角加上螺旋升角。
我们知道在对蜗杆进行加工时,由于切削的深度不同其难度也有所不同,且难度随着深度的深入呈正比发展,同时切削深度越大其切削的量也越大,空间就非常容易被这些残留的切屑堵塞,而此时若切削力突然增加,势必会导致“扎刀”现象的发生[2]。通过分层切削法来进行处理,则完全避开了这一情况,例如:以m3=3 mm的模数,三头蜗杆为例,由于蜗杆牙型的高度达到了6.6 mm,故可将其分为四层来进行加工,第一层深度为2~3 mm;第二册的深度则为1.5~2 mm,第三层则深度则控制在0.5~1mm,第四层为0.5~0.8 mm,若操作者的技术有限,且操作技术不够熟练,则还可适当调整层数,选取以技术相近的加工深度和层数。分段切削则主要是指通过粗车、半精车和精车三大环节来进行蜗杆的加工,例如:将第一层、第二层作为粗车,第三层作为半精车,而第四层则作为精车,再结合不同层,取与之相符的切削用量,使切削的操作效率和加工质量均能够得到有效提高。
3 多线蜗杆的车削技巧
笔者认为多线蜗杆车削加工技巧主要是车削步骤与分线方法之间的充分协调,并认为分层分段切削法是可大大提高加工效率,降低加工难度,根据前面所提到的按照牙型的高度将其分为基层,再通过逐层处理的方法来开展,在整个蜗杆加工的过程中,分别通过粗车、半精车和精车三大环节来进行加工。粗车多线蜗杆加工的过程中,严禁出现拧紧一个螺旋槽车后,再进行另一个螺旋槽的拧转,主要是由于先将一个螺旋槽拧紧,然后再通过粗、精车去拧紧另一条螺旋槽,这非常容易导致分线精度受到影响,致使工件因此报废,故在粗车时,必须保证全部粗车。在粗车完成后精车开展前,应通过左右切削法和直进法切削法开展一次螺旋槽半精车,这就需要在粗车时,为半精车保留0.3 mm的牙形两侧与槽底的余量,使槽的两侧余量能够保持均匀,而半精车过程中,则需要为精车保留0.3 mm的牙形两侧与槽底的余量,该环节对各线精车时的加工余量非常关键,同时也有助于蜗杆精度的提升。在经过半精车的处理后,蜗杆螺纹基本已初见模型,只要再稍微保留小量的余量为精车所用即可,此时可通过斜进法、直进法、左右进给法相互配合来完成精车处理。在进行多线蜗杆精车处理前,对先精车某一个侧面需要有所选择,在确定先精车哪个侧面之前,首先对牙型进行测量,找出齿顶宽最小的那个,再通过测量找到相对较宽的螺旋槽,将齿顶宽最小且螺旋槽最宽的侧面作为精车的侧面,也就是以余量较小的牙型侧面作为精车的开始。在确定了这个牙型侧面,使其能够满足粗糙度,再对螺距(周节)进行精确移动,通过这种方法可有效避免余量不足的情况出现。