石墨加工时光洁度如何保证
㈠ 数控车床加工石墨怎么保证光洁度 急~!!!!提高石墨表面光洁度需要什么样的车刀
应该不是车刀原因吧,试试提高转速
㈡ 在保证尺寸精度的提前下,如何提高石墨表面的光洁度
靠打磨一般不会提高表面致密度,只是将粉末添加到气孔当中了看起来比较好了。
可以用外面磨床磨。
也可以用手动打磨,手动打磨的话精度控制的不是很好,看具体的加工精度。
㈢ 平面磨床用哪种砂轮磨石墨料能保证光洁度而且不容易掉砂
㈣ 怎么辨别石墨表面加工质量的好坏
1.材料的抗折强度
材料的抗折强度是材料强度的直接体现,显示材料内部结构的紧密程度。强度高的材料,其放电的耐损耗性能相对较好,对于精度要求高的电极,尽量选择强度较好的材料。比如:TTK-4可以满足一般电子接插件模具的要求,但有些有特殊精度要求的电子接插件模具,可以选用同等粒径,但强度略高的材料TTK-5材料。
2.材料的肖氏硬度
在对石墨的潜意识认识中,石墨一般会被认为是一种比较软的材料。但实际的测试数据及应用情况显示,石墨的硬度要比金属材料高。在特种石墨行业中,通用的硬度检验标准是肖氏硬度测量法,其测试原理与金属的测试原理不同。由于石墨的层状结构,使其在切削过程中有非常优越的切削性能,切削力仅为铜材料的1/3左右,机械加工后的表面易于处理。
但由于其较高的硬度,在切削时,对于刀具的损耗会略大于切削金属的刀具。与此同时,硬度高的材料在放电损耗方面的控制比较优秀。在我司的EDM用材料体系中,对于应用较多的同等粒径的材料均有两款材料可供选择,一种硬度略高,一种硬度略低,以满足各种不同要求的客户的需求。如:平均粒径为5μm的材料,有ISO-63和TTK-50;平均粒径为4μm的材料,有TTK-4和TTK-5;平均粒径为2μm的材料,有TTK-8和TTK-9。主要是考虑到各种类型的客户对于放电和机械加工的偏重方向。
3.材料的平均颗粒直径
材料的平均颗粒直径直接影响到材料放电的状况。材料的平均颗粒越小,材料的放电越均匀,放电的状况越稳定,表面质量越好。
对于表面、精度要求不高的锻造、压铸模具,通常推荐使用颗粒较粗的材料,如ISEM-3等;对于表面、精度要求较高的电子模具,推荐使用平均粒径在4μm以下的材料,以确保被加工模具的精度、表面光洁度。材料的平均颗粒越小,材料的损耗情况就越小,各离子团之间的作用力就越大。比如:通常推荐在精密压铸模具、锻造模具方面,ISEM-7已足以满足要求;但客户对于精度要求特别高时,推荐使用TTK-50或ISO-63材料,以确保更小的材料损耗,从而保证模具的精度和表面粗糙度。
同时,颗粒越大,放电的速度就越快,粗加工的损耗越小。主要是放电过程的电流强度不同,导致放电的能量大小不一。但放电后的表面光洁度也随着颗粒的变化而变化。
4.材料的固有电阻率
根据对于材料的特性统计,如果材料的平均颗粒相同,电阻率大的放电速度会比电阻率小的慢。对于同等平均粒径的材料,电阻率小的材料,其强度和硬度也会相应略低于电阻率高的材料。即,放电的速度、损耗会有所不同。故此,根据实际应用的需要选择材料非常重要。
由于粉末冶金的特殊性,对于每一个批号材料的各参数都有其材料的代表值有一定的波动范围。但同一档次的石墨材料,其放电效果非常接近,由于各种参数造成的应用效果的差异非常小。
㈤ 如何保证好深孔加工的光洁度
1、进刀量要小! 2、要找到一个合适转速!转速高或低都不能保证光洁度!
㈥ 数控车床加工石墨怎么保证光洁度 急~!!!!
MXG-SL型号的刀具。具体网络一下
㈦ 加工石墨提高表面光洁度用什么样的刀具
很多品牌刀具都有出品专门加工石墨的刀具的,可以谘询相关刀具供应商,买套来试试,不过如果光洁度不好还有很多其他因数影响的!可以是机床或者编程的问题!
㈧ 石墨加工对于刀具选择方面应注意些什么
http://www.cntansu.com/new_view.asp?id=890
PARA刀具在石墨加工的应用
石墨电极与铜电极相比具有电极消耗小、加工速度快、机械加工性能好、加工精度高、热变形小、重量轻、表面处理容易、耐高温、加工温度高、电极可粘结等优点。尽管石墨是一种非常容易切削的材料,但由于用作EDM电极的石墨材料必须具有足够的强度以免在操作和EDM加工过程中受到破坏,同时电极形状(薄壁、小圆角、锐变)等也对石墨电极的晶粒尺寸和强度提出较高的要求,这导致在加工过程中石墨工件容易崩碎,刀具容易磨损。
刀具磨损是石墨电极加工中最重要的问题。磨损量不仅影响刀具损耗费用、加工时间、加工质量,而且影响电极EDM加工工件材料的表面质量,是优化高速加工的重要参数。石墨电极材料加工的主要刀具磨损区域为前刀面和后刀面。在前刀面上,刀具与破碎切屑区的冲击接触产生冲击磨粒磨损,沿工具表面滑动的切屑产生滑动摩擦磨损。
影响刀具磨损的几点事项:
1、刀具材料
刀具材料是决定刀具切削性能的根本因素,对于加工效率、加工质量、加工成本以及刀具耐用度影响很大。刀具材料越硬,其耐磨性越好,硬度越高,冲击韧性越低,材料越脆。硬度和韧性是一对矛盾,也是刀具材料所应克服的一个关键。对于石墨刀具,普通的TiAlN涂层可在选材上适当选择韧性相对较好一点的,也就是钴含量稍高一点的;对于金刚石涂层石墨刀具,可在选材上适当选择硬度相对较好一点的,也就是钴含量稍低一点的;
PARA刀具结合多年的经验,选用欧洲著名品牌的刀具材料.
2、刀具的几何角度
石墨刀具选择合适的几何角度,有助于减小刀具的振动,反过来,石墨工件也不容易崩缺;
(1)前角,采用负前角加工石墨时,刀具刃口强度较好,耐冲击和摩擦的性能好,随着负 前角绝对值的减小,后刀面磨损面积变化不大,但总体呈减小趋势,采用正前角加工时,随着前角的增大,刀具刃口强度被削弱,反而导致后刀面磨损加剧。负前角加工时,切削阻力大,增大了切削振动,采用大正前角加工时,刀具磨损严重,切削振动也较大。
(2)后角,如果后角的增大,则刀具刃口强度降低,后刀面磨损面积逐渐增大。刀具后角过大后,切削振动加强。
(3)螺旋角,螺旋角较小时,同一切削刃上同时切入石墨工件的刃长最长,切削阻力最大,刀具承受的切削冲击力最大,因而刀具磨损、铣削力和切削振动都是最大的。当螺旋角去较大时,铣削合力的方向偏离工件表面的程度大,石墨材料因崩碎而造成的切削冲击加剧,因而刀具磨损、铣削力和切削振动也都有所增大。
因此,刀具角度变化对刀具磨损、铣削力和切削振动的影响是前角、后角及螺旋角综合产生的,所以在选择方面一定要多加注意。
通过对石墨材料的加工特性做了大量的科学测试,PARA刀具优化了相关刀具的几何角度,从而使得刀具的整体切削性能大大提高。
3、刀具的涂层
金刚石涂层刀具的硬度高、耐磨性好、摩擦系数低等优点,现阶段金刚石涂层是石墨加工刀具的最佳选择,也最能体现石墨刀具优越的使用性能;金刚石涂层的硬质合金刀具的优点是综合了天然金刚石的硬度和硬质合金的强度及断裂韧性;但是在国内金刚石涂层技术还处于起步阶段,还有成本的投入都是很大的,所以金刚石涂层在近期不会有太大发展,不过我们可以在普通刀具的基础上,优化刀具的角度,选材等方面和改善普通涂层的结构,在某种程度上是可以在石墨加工当中应用的。
金刚石涂层刀具和普通涂层刀具的几何角度有本质的区别,所以在设计金刚石涂层刀具时,由于石墨加工的特殊性,其几何角度可适当放大,容削槽也变大,也不会降低其刀具锋口的耐磨性;对于普通的TiAlN涂层,虽然比无涂层的刀具其耐磨有显著的提高,但比起金刚石涂层来说,在加工石墨时它的几何角度应适当放小,以增加其耐磨性。
对金刚石涂层来说,目前世界上众多的涂层公司均投入大量的人力和物力来研究开发相关涂层技术,但是至今为止,国外成熟而又经济的涂层公司仅仅限于欧洲;PARA作为一款优秀的石墨加工刀具,同样采用目前世界最先进的涂层技术对刀具进行表面处理,以确保加工寿命的同时,保证刀具的经济实用。
4、刀具刃口的强化
刀具刃口钝化技术是一个还不被人们普遍重视,而又是十分重要的问题。金刚石砂轮刃磨后的硬质合金刀具刃口,存在程度不同的微观缺口(即微小崩刃与锯口)。石墨高速切削加工刀具性能和稳定性提出了更高的要求,特别是金刚石涂层刀具在涂层前必须经过刀口的钝化处理,才能保证涂层的牢固性和使用寿命。刀具钝化目的就是解决上述刃磨后的刀具刃口微观缺口的缺陷,使其锋值减少或消除,达到圆滑平整,既锋利坚固又耐用的目的。
5、刀具的机械加工条件
选择适当的加工条件对于刀具的寿命有相当大的影响。
(1)切削方式(顺铣和逆铣),顺铣时的切削振动小于逆铣的切削振动。顺铣时的刀具切入厚度从最大减小到零,刀具切入工件后不会出现因切不下切屑而造成的弹刀现象,工艺系统的刚性好,切削振动小;逆铣时,刀 具的切入厚度从零增加到最大,刀具切入初期因切削厚度薄将在工件表面划擦一段路径,此时刃口如果遇到石墨材料中的硬质点或残留在工件表面的切屑颗粒,都将引起刀具的弹刀或颤振,因此逆铣的切削振动大;
(2)吹气(或吸尘)和浸渍电火花液加工,及时清理工件表面的石墨粉尘,有利于减小刀具二次磨损,延长刀具的使用寿命,减少石墨粉尘对机床丝杠和导轨的影响;
(3)选择合适的高转速及相应的大进给量。
综述以上几点,刀具的材料、几何角度、涂层、刃口的强化及机械加工条件,在刀具的使用寿命中扮演者不同的角色,缺一不可,相辅相成的。一把好的石墨刀具,应具备流畅的石墨粉排屑槽、长的使用寿命、能够深雕刻加工、能节约加工成本。
6、应用实例
工件尺寸:600×400×90
石墨材料:ISO-63 (东洋碳素)
电极形状:家电散热外盖
使用刀具:PARA ¢6 RO(精加工底部)
PARA ¢6 R3(精加工侧壁)
S=17 000 F= 6000mm/min
加工时间:连续加工15小时
磨损状况:刃尖部<0.02mm,涂层完好
S=17 000 F= 6000mm/min
加工时间:连续加工8小时
磨损状况:刃尖部<0.03mm
http://www.wanfangdata.com.cn/qikan/periodical.Articles/tsjs/tsjs99/tsjs9901/990107.htm
数控石墨电极加工生产线简介
王明岐
INTRODUCTION OF NUMERICAL CONTROL TECHNIQUE IN MACHINING PROCESS OF GRAPHITE ELECTRODES
Wang Mingqi
( Jilin Carbon Group Co Ltd,Jilin 132002)
1 前言
进入70年代以来,以大规模集成电路和微电子计算机为代表的微电子技术的飞跃发展,迅速应用到生产实践中,出现了种类繁多的计算机控制的机床以及具有柔性功能的自动化生产线。数控机床是机电一体化设备的一种。所谓数控就是数字控制,根据生产的程序采用电子计算机进行数字计算,然后对生产过程进行控制,以实现生产过程自动化的一种技术。随着电子计算机的发展,数控技术的应用也越来越普及,其中发展特别迅速的一个方面,就是数控机床。
石墨电极的机械加工是石墨电极生产的最后一道工序,其加工方法与金属制品的加工方法相似。数控电极加工机床以其效率高、精度高、自动化程度高和便于调整,成为电极机械加工机床的重要发展方向。
炭素企业从80年代末期开始使用数控电极加工机床,如吉林炭素集团有限责任公司和兰州炭素有限公司同时引进的美国英格索尔公司制造的数控电极加工自动线(以下简称美线),后来吉林炭素集团有限责任公司又引进日本不二越公司制造的数控电极加工自动线(以下简称日线)。从使用情况看,效果是明显的,不但降低了工人的劳动强度,改善了生产环境,提高了劳动生产率,而且由于采用数控技术,使石墨电极的加工质量明显提高。
2 石墨电极的机械加工工艺
石墨电极在压型后,它的大小和形状就已经确定,但是压型后的生制品经过焙烧和石墨化后,由于产生了一定程度的变形,表面上还粘附一些填充料等杂质,显得形状不规则,表面粗糙不平,无法满足使用要求,必须经过机械加工,才能使用。
石墨电极的机械加工包括镗孔、车外圆和铣螺纹,与金属制品的加工相似。根据石墨电极加工的生产特点,数控电极加工机床一般采用3机组的结构,分别完成镗孔、车外圆和铣螺纹。
石墨电极机械加工的第1道工序是镗孔和粗平端面,端面的切削量一般设定为小于30mm,镗孔后孔壁要求给铣螺纹留一定的加工余量,约2mm。
镗孔和粗平端面以后,要进行外圆的加工,外圆的加工量一般小于15mm。这道工序工艺简单,只要调整好外圆加工车刀,使之满足加工质量要求就可以了。
石墨电极机械加工的最主要工序是铣螺纹,它的质量好坏直接关系到石墨电极的使用。在铣螺纹的加工中,对螺纹的锥度、孔径、扣形都有严格要求,并要进行连接试验。
3 数控技术在石墨电极机械加工中应用
3.1数控电极加工机床的结构
数控电极加工机床由数控系统(CNC)、伺服系统和机床本体3部分组成,如图1所示。
图1 数控加工机床的结构
数控机床的可靠性主要取决于数控系统,数控系统的发展方向是提高处理速度和控制精度,增强抗干扰能力,增加可靠性,减小体积等。“日线”机床的FANUC-18TEA数控系统和“美线”机床的AB-7360数控系统相比在这些方面都有很大提高。
伺服系统也叫执行机构,它的性能好坏直接影响加工精度、进给速度和生产效率。伺服系统按控制原理分有开环、半闭环和全闭环系统;按采用的执行元件分有液压伺服、直流电气伺服和交流电气伺服系统。早期引进的数控电极加工机床多使用液压伺服系统驱动,传感器定位,只在高精度铣螺纹工位采用直流电气伺服系统驱动。新一代的数控电极加工机床全部采用交流电气伺服系统带滚珠丝杠驱动,增加对中、测长系统,这样的设计结构大大提高了加工系统的定位精度和加工精度。
数控电极加工自动线的机床本体部分一般采用3个机组的设计结构,分别完成镗孔、车外圆和铣螺纹。
3.2石墨电极螺纹的2种加工方法
石墨电极机械加工的最主要工序是铣螺纹,从目前国内炭素工厂所使用的数控电极加工机床来看,可归结为2种加工方法:一种是美国英格索尔公司制造的“美线”,另一种是日本不二越公司制造的“日线”。
美国英格索尔公司设计制造的这台数控电极加工机床采用的是下面加工方法:如图2所示,开始加工时,装有梳刀的主轴以电极中心轴线为中心以60r/min的速度旋转,同时加工刀具在CNC的控制下,通过x方向和z方向的合成运动完成螺纹的加工。在整个加工过程中,电极保持不动。美线机床采用多次循环完成一根电极的螺纹加工,以主轴旋转720°为一个单循环。为了保证加工质量,可以选择循环次数,一般采用9次循环,每次循环的进刀量是递减的,以最后一次进刀量为最小,以保证螺纹的光洁度。
图2“美线”机床铣螺纹加工原理图
这种方法的缺点是,完成一根电极的螺纹加工需要x轴、z轴多次频繁往复运动,大大增加了数控及伺服系统的工作量,螺纹的光洁度不好,虽然可以通过增加循环次数来改善螺纹的光洁度,但是会增加循环时间,降低工作效率。数控电极加工机床经过二十几年的发展,加工方法已日渐成熟,目前数控电极加工机床多采用“日线”的加工方法。
“日线”机床电极螺纹的加工方法与“美线”有很大不同,它在铣螺纹工序采用的加工方法是:电极本身以1.8r/min的速度旋转,加工刀具以1000r/min的速度高速自转,同时加工刀具在CNC的控制下通过x方向和z方向的合成运动完成螺纹加工,整个加工过程电极旋转365°。如图3所示,OO′为电极旋转中心线,PP′为刀具旋转中心线,PP′随刀具z方向运动而变化。
图3“日线”机床铣螺纹加工原理图
3.3工件程序设计
以日本不二越公司制造的数控电极加工自动线FANUC数控系统为例,研究一下工件程序的设计。
3.3.1镗孔并粗平端面
石墨电极机械加工的第1道工序是镗孔并粗平端面。如图4所示是CNC控制的x轴,L1是孔底刀距毛坯表面的距离,它来自对中、测长的数据计算,L2是孔的深度,L3是通过数码开关设定的切削量。加工过程如下:
图4镗孔并粗平端面加工过程示意图
加工开始x轴快速定位,孔底刀接近电极表面,然后x轴开始工进,工进一般采用2个进给速度,先以400mm/min的速度进给,当端面刀开始加工时,切削量增加,以200mm/min速度进给。
加工结束,主轴停止,x轴返回零点,再开始下一个循环。程序如下:
N010 #501=L1;
N020 #502=L1+L2;
N030 #503=L1+L2+L3;
N040 M15;(主轴旋转)
N050 G90G00X-#501;
N060 G01X-#502F400;
N070 G01X-#503F200;
N080 M11;(主轴停止)
N090 G90G00X0.0;
N0100 M30;
这个工序加工简单,CNC控制一个轴就可以完成,在硬件系统功能具备的情况下,工件程序可以编制得非常简单。
3.3.2精平端面并铣螺纹
如图5所示为精平端面的加工原理图,#100为x轴定位值,#110为y轴定位值,#111为y轴终位值。加工过程如下:
图5 精平端面加工过程示意图
加工开始,x轴快速定位,然后卡具夹紧电极,主轴电机带动电极旋转,转速为12r/min,用于精平端面。精平端面开始,y轴快速定位,然后进行工进,进给速度为180mm/min,加工时间为5s。精平端面完了,y轴返回零点。
程序如下:
N010 M16;(主轴定向)
N020 M98P1632;(调子程序)
N030 G00X-#100;
N040 M10;(夹紧电极)
N050 S60M03;
N060 G00Y-#110;
N070 G01Y-#111F180;
N080 G04X5.0;
N090 G28Y0;
铣螺纹加工过程如图6所示。
图6 铣螺纹加工过程示意图
说明:x轴快速吃刀量为#122=-10mm,时间2s,2s主轴旋转1.8/60*2转,所以z轴快速吃刀量应为#123=8.4667*1.8*2/60/COS(9.462322)mm,进给速度#127=10/(1.8*2/60)。365°铣螺纹,z轴的进给量为#124=8.4667*365/360/COS(9.462322),进给速度为#128=8
㈨ 石墨带两面光洁度不好怎么办谢谢
可以加些填充料或经压光处理