焊接1小时消耗多少混合气
① 焊接气体流量是多少
焊接气体流量:
不知道是什么焊接方法。
氩弧焊气体流量一般为喷嘴直径的0.8倍。直径为10的话,通常是8L/min
气体保护焊焊接为15-20L/min。
具体的流量还要看焊缝成型来调节。
② CO2气体保护焊接中CO2消耗配比(1kg焊丝消耗多少LCO2)
c.特殊性能钢:(a)不锈耐酸钢;(b)耐热钢;(c)电热合金钢;(d)电工用钢;(e)高锰耐磨钢。 7、按冶炼方法分类 (1) 按炉种分 a.转炉钢:(a)
③ 焊接用的混合气多少钱一吨
要看混合气的成分、比例。氩气与二氧化碳八比二一百元左右。
④ 正常情况下,一瓶co2焊接可以用多少天(每天工作8H)如果换作是Ar80%+20%co2呢价格分别是多少钱一瓶
我是支持混合气的,大概贵4倍。
标准,二氧化碳25公斤,12个立方,看你表开多大,自己除。
标准氩气15个压,6个立方。
一般灌气的都不会给你这么多的,肯定是要缺斤短两的。
⑤ 混合气体焊接用途
1、混合气体保护焊:由两种或两种以上气体,按一定比例组成的混合气体作为保护气体的气体保护焊。2、一、混合气体在熔化极气体保护焊中的应用熔化极气体保护焊熔敷速度快、生产效率高、易实现自动化,因而在焊接生产中得到日益广泛的应用。早期进行熔化极气体保护焊通常采用单一气体(如Ar、CO2等)作保护,目前单一气体保护焊仍占相当比例。随着实践的不断深入,人们发现由不同气体组成的混合气体适应不同的金属材料和焊接工艺的需要,并能获得最佳的保护效果、优良的电弧特性及十分稳定的熔滴过渡特性,比用单一气体更易得到好的焊接结果。现在,采用混合气体的趋向愈来愈强,混合气体的种类也越来越多。研究混合气体的应用现状,探索其在GMAW中的影响规律有着较大的现实意义。3、混合气体种类及特性目前可供焊接使用的混合气体主要有二元混合气、三元混合气和四元混合气,不同混合气体有其独特作用。混合气体主要以Ar为基本组元,分别加入惰性气体、还原性气体及氧化性气体中的一种或几种。混合气体组分不同,特性就有很大同,加入惰性气体或氧化性组分的混合气体电弧稳定性和金属过渡特性都较好,应用也较广泛。在以Ar为基本组元加入氧化性较强的O2或CO2的混合气体中,一个突出特点是电弧燃烧更表1常用混合气体一览表元数混合气体特点用途二元Ar+He电弧稳定,金属过渡特性好,适用TIG焊、MIG焊的喷射过渡。可于各种非铁金属焊接,主要用于铝及其合金,钛及其合金。Ar+N2N2价格便宜,奥氏化,提高接头抗点蚀和抗应力腐蚀能力,但焊接飞溅较大。主要用于铜及其合金。主要用于不锈钢,镍基合金。主要用于碳钢、低合金钢、不锈钢。主要用于碳钢低合金钢。主要用于碳钢,采用特殊成分的焊丝时也可用于低合金钢焊,Ar+H适用于TIG焊。氢导热系数大,对电弧有较强的冷却作用,电弧稳定性好,对焊件热输入比纯Ar高,熔深较大。Ar+O2改善熔滴细化率,电弧稳定性和金属过渡好,熔深较大,呈蘑菇形。Ar+CO2电弧稳定性和金属过渡特性好,适用于短路过及喷射过渡,熔深较大,呈扁平形。CO2+O2具有较强的氧化性,电弧稳定性较差但仍具有较好的金属过渡特性。Ar+O2+CO2具有短路、粗滴、脉冲、喷射和高密度等过渡形式,各种形式都具有多方面适应性。用于各种厚度的碳钢、低合金钢、不锈钢。Ar+CO2+H2少量氢可改善不锈钢脉冲MIG焊时焊缝的润湿性,和电弧稳定性。用于不锈钢脉冲MIG焊。主要用于碳钢、低合金钢、高强钢、不锈钢。Ar+He+CO2增加焊缝热输入,电弧稳定性和金属过渡特性好。四元:Ar+He+CO2+O2适用于高密度金属过渡,具有良好的力学性能和操作性。要用于低合金高强度钢。稳定。原因是加入了O2或CO2后,加剧了电弧区域的氧化反应,有助于低逸出功的氧化膜形成,克服了单独用Ar气焊接时产生的电弧飘移现象,此外,电弧气氛中的氧化反应放出大量热量,使母材熔深增加,焊丝熔化系数提高,有利于提高生产率。大量实践还证明,在富Ar气体中加入氧化性气体,能减少液态金属的表面张力,有利于金属熔滴的细化,降低射流过渡的临界电流。这说明氧化性混合气体能使熔滴过渡特性变好。加入He的混合气体,主要是用He导热性好、电弧电压高的物理特性,提高了混合气体电弧弧柱温度,故常用于焊接中厚板或导热性好的金属,如铝及其合金。2混4、合气体的配比及其应用1)、二元混合气体(1)Ar+He用不同Ar、He组合能控制阴极斑点的位置,提高电弧电压和热量,保持Ar的有利特性。但He的体积分数小于10%时会影响电弧和焊缝的力学性能,与Ar混合的He的体积分数至少应在20%以上才能产生和维持稳定喷射电弧的效果。He的加入量视板厚而定,板越厚加入量越大。Ar+25%He这种配比很少,仅用于铝焊接时需要增加熔深和对焊缝成型要求很高的场合。Ar+75%He广泛用于厚度25mm以上铝的平位置自动焊,还可增加6~12mm厚铜焊件的热输入,并减少焊缝的气孔。Ar+90%He用于焊接厚度12mm以上的铜和76mm以上的铝,可提高热输入,改善焊缝成型。这种组合也用于高Ni填充金属的短路过渡焊接。铝及其合金的焊接一般优先选用TIG焊。文献在焊接1460型铝锂合金时,为获得无气孔、无氧化膜夹杂的优质焊接接头,采用特种喷嘴,并向其熔池补吹含35%~45%He的Ar、He混合气,以保护焊缝和近缝区,该混合气体基本上避免了焊缝成型时的氧化膜夹杂物及热裂纹。二元混合气体2)、Ar+N2N:是促进奥氏体化的元素,在Ar中加1%N2可使347不锈钢焊缝得到全奥氏体组织,加1.5%~3%N2的混合气也开始采用。与Ar+He比较,N2价格便宜,但焊接时飞溅较大,焊缝表面粗糙,外观质量较差。文献在厚壁紫铜板的MIG焊中,在Ar中分别加入5%、10%、15%的N2进行射流过渡焊接。随着N2比例的增加,焊道的溢流情况得到改善,堆焊焊道的熔深有明显增加,而且适当地降低紫铜试板的预热温度,仍可得到熔合良好的焊缝。而在短路过渡时,却难以产生良好的熔合,母材几乎完全不熔化。3)、Ar+O2Ar:中添加少量O2可提高电弧的稳定性,降低熔滴与焊丝分离的表面张力,从而提高填充金属过渡的熔滴细化率,改善焊缝润湿性、流动性和焊缝成型,适当减轻咬边倾向,使焊道平坦。Ar+1%O2主要用于不锈钢的喷射过渡焊,1%O2一般足以使电弧稳定,改善熔滴细化率、与母材熔合及焊缝成型。有时,添加少量O2也用于焊接非铁金属。Ar+2%O2用于碳钢、低合金钢、不锈钢的喷射电弧焊,它比加1%O2更能增加焊缝润湿性,且力学性能和抗腐蚀性基本不变。文献研究了脉冲MAG焊在其它条件相同的情况下,采用含氧量分别为1%、2%、3%的Ar+O2作保护气体,得到的电弧静特性曲线以Ar+2%O2时位置最低。Ar+5%O2熔池流动性更好,是焊接一般碳素钢最通用的Ar-O2混合气,焊接速可更高。Ar+(8%~12%)O2主要应用于单道焊,但某些多道焊应用也有报导。这种混合气体因其熔池流动性较大,喷射过渡临界电流较低,因而在有些焊接应用中更能显示其优越性。Ar+(12%~25%)O2混合气体含氧量很高,添加约20%以上O2时,喷射过渡变得不稳定,并偶有短路和粗粒过渡发生,因而使用有限,但焊出的焊缝气孔很少。4)、Ar+CO2:与加O2相反,当用CO2时,熔深改善,气孔较少。适当增加CO2可改变焊缝组织、夹杂物分布状态和焊缝合金元素含量,大幅度降低焊缝金属的氢脆敏感性。Ar+(3%~10%)CO2用于各种厚度碳钢的喷射电弧及短路过渡焊。Ar+5%CO2普遍用于低合金钢厚板全位置脉冲GMAW焊,该混合气体使弧柱变挺,较强的电弧力更适应钢材表面氧化皮,且能更好地控制熔池。文献对锅炉压力容器焊接中采用Ar+10%CO2气体保护的MAG焊进行了焊接工艺评定。结果表明,采用MAG焊改善了热影响区的韧性,提高了焊缝的外观质量,焊缝表面过渡光滑,焊缝成型好。Ar+(11%~20%)CO2已用于多种窄间隙焊、薄板全位置焊和高速GMAW焊,大多用于碳钢和低合金钢焊接,对薄板可达到最大的生产效率。含20%CO2时习惯称为富氩CO2保护气,它克服了纯CO2焊中弧柱及电弧斑点强烈收缩的缺点,同时减少了飞溅。文献正是利用富氩CO2焊实现了纯CO2焊在液压挖掘机制造上所达不到的工艺。Ar+(21%~25%)CO2是最常用于低碳钢短路过渡焊的气体,现已成为大多数实芯焊丝和常用药芯焊丝焊接的标准混合气体。该混合气体在厚板大电流情况下也很好用,且电弧稳定,熔池易于控制,焊缝美观,生产效率高。Ar+50%CO2用于高热输入深熔焊,薄板焊时较易焊穿,这使该气体的适应性受到限制。当大电流焊接时,金属过渡比上述混合气体更像纯CO2焊,但由于加Ar而使飞溅略为减少。Ar+75%CO2用于厚壁管的焊接,与侧壁的熔合和深熔良好,加Ar组分提高了电弧的稳定性并减少了飞溅。5、三元混合气体1)、Ar+O2+CO2:这三种气体的混合气体因可用于短路过渡、粗滴过渡、脉冲、喷射和高密度过渡的工作特性而被定为“万能气”。Ar+(5%~10%)CO2+(1%~3%)O2混合气体主要优点在于焊接各种厚度的碳钢、低合金钢、不锈钢,不论哪种过渡形式都有很广的适应性。Ar+(10%~20%)CO2+5%O2混合气体可产生热短路过渡且熔池流动性好。当采用三重脱氧焊丝时,可使熔池呈惰性,且喷射电弧过渡良好。2)、Ar+CO2+H2:不锈钢脉冲MIG焊时加少量H2(1%~2%),焊缝润湿性改善且电弧稳定。CO2量要少(1%~3%),使渗碳最少,并保持良好的电弧稳定性。此气体使焊缝金属含氢量过高,焊缝力学性能不好且会出现裂缝,因此不适用于低合金钢。3)、Ar+He+CO2:Ar中加He及CO2可增加焊接热输入并改善电弧稳定性,焊道润湿性和成型更好。Ar+(10%~30%)He+(5%~15%)CO2主要用于碳钢和低合金钢脉冲喷射电弧焊。CO2含量较低时能改善电弧稳定性,低电流脉冲喷射电弧焊也可以用。(60%~70%)He+(20%~35%)Ar+(4%~5%)CO2用于高强钢,尤其适用全位置短路过渡焊,CO2含量要低,以保持良好的焊缝金属韧性。He可提供熔池流动性所需的热量,He含量不需要太高,因为熔池变得稀些容易控制。90%He+7.5%Ar+2.5%CO2用于不锈钢全位置短路电弧焊,CO2含量要低,使渗碳最少,以保证良好的耐腐蚀性,尤其是多道焊。添加CO2+Ar可使电弧稳定性和熔透性好。6、、四元混合气体四元混合气体目前四元混合气体主要是Ar+He+CO2+O2,最具有代表性的高熔敷率焊接工艺是TIME()工艺,是一种高性能MAG焊接方法。它采用大干伸长7、常用的混合气体有以下几种:1)、Ar+He:氩气的优点是电弧燃烧非常稳定、飞溅极小。氦气的优点是电弧温度高、母材金属热输入大、焊接速度快。以氩气为基体,加入一定数量的氦气即可获得两者所具有的优点。焊接大厚度铝及铝合金时,采用Ar+He混合气体可改善焊缝熔深、减少气孔和提高生产率。板厚10~20mm时入体积分数为50%的He;板厚大20mm后,则加入体积分数为75%~90%的He。He占的比例一般为50%~75%(体积分数)。2)、Ar+H2:在氩气中加入H2可以提高电弧温度,增加母材金属的热输入。如用TIG电弧或等离子弧焊接不锈钢时,为了提高焊接速度常在氩气中加入体积分数为4%~8%H2。利用Ar+H2混合气体的还原性,可用来焊接镍及其合金,以抑制和消除镍焊缝中的CO气孔。但加入的H2含量(体积分数)必须低于6%,否则会导致产生氢气孔。3)、Ar+N2:在Ar中加入N2后,电弧的温度比纯氩高,主要用于焊接铜及铜合金,这种混合气体与Ar+He混合气体相比较,优点是N2来源多,价格便宜。缺点是焊接时有飞溅,并且焊缝表面较粗糙,焊接过程中还伴有一定的烟雾。4)、Ar+O2混合气体有两种类型:一种含O2量(体积分数)较低,为1%~5%,用于焊接不锈钢;另一种含O2量(体积分数)较高,可达20%以上,用于焊接低碳钢及低合金结构钢。在纯氩中加入体积分数为1%的O2用来焊接不锈钢时,可以克服纯氩焊接不锈钢时电弧阴极斑点不稳定的现象(阴极飘移)。6)Ar+CO2:广泛应用于焊接碳钢及低合金结构钢,可以提高焊缝金属的冲击韧度和减小飞溅。7、Ar+CO2+O2:三者混合可用来焊接低碳钢、低合金结构钢,对焊缝成形、接头质量、熔滴过渡和电弧稳定性都有良好效果。8、这样你能看明白了吗。
⑥ 焊接混合气体比例
氩加复二氧化碳的比例是制根据焊接材料的不同有一定的变化,网上说8:2是最常用的碳钢的焊接,二氧化碳的含量的多少直接影响到焊接时的熔池深度、电离作用及熔滴过渡情况,直接影响到飞溅的多少,表面质量和内部成型。钢含碳量越低要求混合气中的二氧化碳含量相对越低。
⑦ 焊接时混合气的压力多大
你好,焊接时混合气的压力只有零点几mpa的,焊接上一般不用压力作为参数,而是保护气的流量,比如气保焊的保护气流量一般是18-24L/min。
望采纳,谢谢。
⑧ 二氧化碳气体保护焊 用混合气时气体的配比参数是多少
一般焊接碳钢的二保焊用的富氩气体是80%Ar+20%CO2,焊接不锈钢用的是97.5%Ar+2.5%O2。
二氧化碳气体价廉易得,而版且消耗电能少,是一权种既经济,又便于自动化生产的焊接方法。一般情况下,二氧化碳气体保护焊的成本仅为手工电弧焊的37%-42%,为埋弧焊的40%,而且生产效率高。焊接电流密度大,焊丝熔化率高,母材熔透深度大,对于10毫米左右的钢板,可以不开坡口直接焊接,焊后渣很少,一般可不清渣,焊接质量稳定。
(8)焊接1小时消耗多少混合气扩展阅读
1、焊接厚板不锈钢推荐采用射流过渡,适用于厚板平焊、横焊。
2、焊接薄板不锈钢推荐采用短路过渡,适用于任何位置。
3、保护气体的选用:射流过渡采用Ar98%+CO22%,短路过渡采用Ar97.5%+CO22.5%。
4、为防止背面焊道表面氧化和良好成型,底层焊道背面可附加氩气保护。
5、此外可以采用不锈钢药芯焊丝,保护气体采用CO2,可提高焊缝成型。
⑨ 现在焊接用混合气比二氧化碳贵多少气体消耗量一样吗
丙烷气增效剂、天然气增效剂。
锐锋燃气添加了锐锋增效剂以后的天然气,它保持了天然气清洁环保,安全可靠,使用方便,价格低廉的特点。
同时又因为添加了增效剂,使其热值提高到接近于液化气热值,温度达到三千度以上,燃烧更加充分。
混合气体成本计算 1、混合气体保护焊的气体流量为20-25升/分钟,合1.200-1.500 m³/小时,每天按10小时,每天每台焊机用气量为12000-15000升,即12-15m³;按我厂50台焊机计算,每天用气量应为600-750立方米。 2、氩气的分子量为39.95,每mol氩气为39.95克,每吨液氩中含有1000000/39.95=25031mol氩气,常温常压下每mol气体都是为22.4升,合0.0224m³,则每吨液氩汽化后可得氩气25031.3*0.0224=560.7m³。可得氩气的比重为1.783公斤/ m³ ( 1吨液氩汽化=560.7m³) 3.CO2的分子量为44,每吨液体CO2常温常压下可汽化成CO2为:(1000000/44)*0.0224=509m³;可得CO2的比重为1.965公斤/ m³。 ( 1吨液CO2汽化=509m³) 4.O2的分子量为32,每吨液氧常温下可汽化成氧气: (1000000/32)*0.0224=700m³ (1吨液氧汽化=700m³) 5.混合气比例按照8:2计算,8m³的氩气重量为8*1000/560.7=14.26公斤 2m³的CO2重量为2*1000/509=3.93公斤 10立方米的混合气总重为14.26+3.93=18.19公斤, 1 m³混合气的质量为1.819公斤 混合气中两种气体重量所占比例为14.26:3.93=3.63:1 按照每天用混合气750 m³计算, 所用气体重量为750*1.819=1361.25公斤 其中:氩气3.63*1361.25/(1+3.63)=1067.2公斤 CO2为1*1361.25/(1+3.63)=294公斤 6.每月所用: 氩气: 1067.2*31=33.083吨, CO2: 294*31=9.114吨 若使用CO2焊接,750m³重量为750*1.965=1473.75公斤,每 月使用1473.75*31=45.686吨,每瓶CO2按18公斤,共计2538瓶,每
瓶16元,合40608元。
⑩ 焊接机器人500mm/分钟,一天8个小时,请问一天损耗多少的气体呢8个小时不间断工作。
不同的压力消耗不同,假如固定压力,看看1小时用几瓶气乘8就是一天的消耗量,(注:做实验时要注意用满瓶的气罐)