回流焊接不良率多少
㈠ 请问回流焊接的可焊厚度是多少
焊接有很多因素,单纯的0.5锡膏是完全可以,但是要考虑镀金块的厚度和形状! 设置的温度和时间根据你回流焊的温区,以及回流焊大小! 这里说的是回流焊不是烤箱!!!
㈡ SMD电解电容,在过完回流焊后爆炸(未通电),烦请电解电容的专家分析此产生的机理,不良率约30PPM
你好!SMD电解电容均有极性,如果在焊接时接错极性,会在使用时增加漏电流而缩短寿命。因此在替换时应按照电路板上标示的极性安装电容。 产品详情:
直径:应确保替换品与原液态贴片电解电容直径相同,这样才能确保电容引脚与电路板上原引脚孔一一对应。替换品尺寸过大,不但无法安装,同时会因元件过密导致散热性能下降,影响器件性能。替换品尺寸过小,贴片电解电容 贴片电解电容电容引脚在插入元件孔焊接时发生弯曲,无法正常焊接或虚焊,导致电路运行不稳定(图1)。
最后需要强调的是,不能仅从电容来判断主板质量的优劣,如果厂商没有良好的设计和试验环境,最终产品没有做老化检验,元件也没有做搭配测试,即使选用的全是名牌元件,贴片电解电容 贴片电解电容也不能确保拼凑出来的产品的性能。
㈢ 影响回流焊质量的参数有哪些
广晟德回流焊给您详细讲一下影响回流焊质量的参数有哪些:
1、回流焊应具备温度曲线测试功能,如果设备无此配置,应外购温度曲线采集器。
PCB设计和加工质量、元器件和焊膏质量是保证回流焊质量的基础,只要PCB设计正确,PCB、元器件和焊膏的质量都是合格的,回流焊质量是可以通过印刷、贴装、回流焊每道工序的工艺来控制的。
2、回流焊加热区长度越长、加热区数量越多,越容易调整和控制温度曲线。一般中小批量生产选择5-6个温区,加热区长度1.8m左右的回流炉即能满足要求。标准无铅生产我们通常为8个温区,在控制方面有触摸式、电脑式、按键式的。另外,加热器应要独立控温,以便调整和控制温度曲线。
3、回流焊传送带在运行时要平稳,中低档的回流焊,传动机构比较简单,也会有少许振动。传送带震动会造成移位、吊桥、冷焊等焊接缺陷。
4、不同回流焊其保温性能不一样,低档的产品一般保温层不够,最高温度通常达不到300度。最高加热温度一般为300~350℃,如果是无铅焊料或金属基板,应选择350℃以上。
5、回流焊的发热方式和传热方式
发热丝式发热体交换率比较高,寿命比较长;发热管式发热体,发热效率低,如不通过热风,受热面均匀性不好;红外管式发热体辐射式,均匀性好,但会和产生色温差,主要用于热补偿区,但不适用于焊接区。
6、传送带宽度要满足最大PCB尺寸要求。宽度越大,回流焊功率也就会更大,所以选择合适才是最重要的
7、还要能省电,回流焊是SMT设备中耗电量惊人的。所以选择回流焊设备时看他们的保温材料用的好不好。保温材料用的好热损失少,回流焊就会省电。
㈣ 不良率的百分比怎么算
不良资产比率 = 年末不良资产总额/年末资产总额×100%
指标说明
不良资产比率着重从企业不能正常循环周转以谋取收益的资产角度反映了企业资产的质量,揭示了企业在资产管理和使用上存在的问题,用以对企业资产的营运状况进行补充修正。
该指标在用于评价工作的同时,也有利于企业发现自身不足,改善管理,提高资产利用效率。
一般情况下,本指标越高,表明企业沉积下来、不能正常参加经营运转的资金越多,资金利用率越差。该指标越小越好,0是最优水平。
(4)回流焊接不良率多少扩展阅读
企业的不良资产是指企业尚未处理的资产净损失和潜亏(资金)挂帐,以及按财务会计制度规定应提未提资产减值准备的各类有问题资产预计损失金额。
银行的不良资产主要是指不良贷款,俗称呆坏账。也就是说,银行发放的贷款不能按预先约定的期限、利率收回本金和利息。不良资产主要是指不良贷款, 包括逾期贷款(贷款到期限未还的贷款)、呆滞贷款(逾期两年以上的贷款)和呆账贷款(需要核销的收不回的贷款)三种情况。 其他还包括房地产等不动产组合。
不良资产是不能参与企业正常资金周转的资产,如债务单位长期拖欠的应收款项,企业购进或生产的呆滞积压物资以及不良投资等。
㈤ 评价回流焊炉性能主要有哪些技术指标
回流焊技术:板卡上的元件都是通过这种工艺焊接到线路板上的,这种设备的内部有一个加热电路,将空气或氮气加热到足够高的温度后吹向已经贴好元件的线路板,让元件两侧的焊料融化后与主板粘结。这种工艺的优势是温度易于控制,焊接过程中还能避免氧化,制造成本也更容易控制。
根据技术分类
热板传导回流焊:这类回流焊炉依靠传送带或推板下的热源加热,通过热传导的方式加热基板上的元件,用于采用陶瓷(Al2O3)基板厚膜电路的单面组装,陶瓷基板上只有贴放在传送带上才能得到足够的热量,其结构简单,价格便宜。中国的一些厚膜电路厂在80年代初曾引进过此类设备。
红外(IR)回流焊炉:此类回流焊炉也多为传送带式,但传送带仅起支托、传送基板的作用,其加热方式主要依红外线热源以辐射方式加热,炉膛内的温度比前一种方式均匀,网孔较大,适于对双面组装的基板进行回流焊接加热。这类回流焊炉可以说是回流焊炉的基本型。在中国使用的很多,价格也比较便宜。
气相回流焊接:气相回流焊接又称气相焊(VaporPhaseSoldering,VPS),亦名凝热焊接(condensationsoldering)。加热碳氟化物(早期用FC-70氟氯烷系溶剂),熔点约215℃,沸腾产生饱和蒸气,炉子上方与左右都有冷凝管,将蒸气限制在炉膛内,遇到温度低的待焊PCB组件时放出汽化潜热,使焊锡膏融化后焊接元器件与焊盘。美国最初将其用于厚膜集成电路(IC)的焊接,气柏潜热释放对SMA的物理结构和几何形状不敏感,可使组件均匀加热到焊接温度,焊接温度保持一定,无需采用温控手段来满足不同温度焊接的需要,VPS的气相中是饱和蒸气,含氧量低,热转化率高,但溶剂成本高,且是典型臭氧层损耗物质,因此应用上受到极大,的限制,国际社会现今基本不再使用这种有损环境的方法。
热风回流焊:热风式回流焊炉通过热风的层流运动传递热能,利用加热器与风扇,使炉内空气不断升温并循环,待焊件在炉内受到炽热气体的加热,从而实现焊接。热风式回流焊炉具有加热均匀、温度稳定的特点,PCB的上、下温差及沿炉长方向的温度梯度不容易控制,一般不单独使用。自20世纪90年代起,随着SMT应用的不断扩大与元器件的进一步小型化,设备开发制造商纷纷改进加热器的分布、空气的循环流向,并增加温区至8个、10个,使之能进一步精确控制炉膛各部位的温度分布,更便于温度曲线的理想调节。全热风强制对流的回流焊炉经过不断改进与完善,成为了SMT焊接的主流设备。
红外线+热风回流焊:20世纪90年代中期,在日本回流焊有向红外线+热风加热方式转移的趋势。它足按30%红外线,70%热风做热载体进行加热。红外热风回流焊炉有效地结合了红外回流焊和强制对流热风回流焊的长处,是21世纪较为理想的加热方式。它充分利用了红外线辐射穿透力强的特点,热效率高、节电,同时又有效地克服了红外回流焊的温差和遮蔽效应,弥补了热风回流焊对气体流速要求过快而造成的影响。
这类回流焊炉是在IR炉的基础上加上热风使炉内温度更加均匀,不同材料及颜色吸收的热量是不同的,即Q值是不同的,因而引起的温升AT也不同。例如,lC等SMD的封装是黑色的酚醛或环氧,而引线是白色的金属,单纯加热时,引线的温度低于其黑色的SMD本体。加上热风后可使温度更加均匀,而克服吸热差异及阴影不良情况,红外线+热风回流焊炉在国际上曾使用得很普遍。
由于红外线在高低不同的零件中会产生遮光及色差的不良效应,故还可吹入热风以调和色差及辅助其死角处的不足,所吹热风中又以热氮气最为理想。对流传热的快慢取决于风速,但过大的风速会造成元器件移位并助长焊点的氧化,风速控制在1.Om/s~1.8ⅡI/S为宜。热风的产生有两种形式:轴向风扇产生(易形成层流,其运动造成各温区分界不清)和切向风扇产生(风扇安装在加热器外侧,产生面板涡流而使各个温区可精确控制)。
热丝回流焊:热丝回流焊是利用加热金属或陶瓷直接接触焊件的焊接技术,通常用在柔性基板与刚性基板的电缆连接等技术中,这种加热方法一般不采用锡膏,主要采用镀锡或各向异性导电胶,并需要特制的焊嘴,因此焊接速度很慢,生产效率相对较低。
热气回流焊:热气回流焊指在特制的加热头中通过空气或氮气,利用热气流进行焊接的方法,这种方法需要针对不同尺寸焊点加工不同尺寸的喷嘴,速度比较慢,用于返修或研制中。
激光回流焊,光束回流焊:激光加热回流焊是利用激光束良好的方向性及功率密度高的特点,通过光学系统将激光束聚集在很小的区域内,在很短的时间内使被加热处形成一个局部的加热区,常用的激光有C02和YAG两种,是激光加热回流焊的工作原理示意图。
激光加热回流焊的加热,具有高度局部化的特点,不产生热应力,热冲击小,热敏元器件不易损坏。但是设备投资大,维护成本高。
感应回流焊:感应回流焊设备在加热头中采用变压器,利用电感涡流原理对焊件进行焊接,这种焊接方法没有机械接触,加热速度快;缺点是对位置敏感,温度控制不易,有过热的危险,静电敏感器件不宜使用。
聚红外回流焊:聚焦红外回流焊适用于返修工作站,进行返修或局部焊接。[3]
根据形状分类
台式回流焊炉:台式设备适合中小批量的PCB组装生产,性能稳定、价格经济(大约在4-8万人民币之间),国内私营企业及部分国营单位用的较多。
立式回流焊炉:立式设备型号较多,适合各种不同需求用户的PCB组装生产。设备高中低档都有,性能也相差较多,价格也高低不等(大约在8-80万人民币之间)。国内研究所、外企、知名企业用的较多。[4]
㈥ 选择性波峰焊行业性不良率是多少
选择性波峰焊行业性不良率是多少!! 这个问题取决于焊接什么样的产品,热容量回小,要求答透锡不高的产品,密度不高,器件数量少的产品选择性波峰焊良率还是比较高的,但如果器件密度高,特别板厚线路层多的大热量的产品或器件,选波的焊接效果就会不太理想了,一般合适小批量打样用的,大批量生产可以考虑用全自动浸焊机来代替,效率会高很多,生产成本也会低,还不需要氮气保护!!
DS300FS
㈦ 无铅回流焊将含氧量控制在多少合适
由于电子产品PCB板不断小型化的需要,出现了片状元件,传统的焊接方法已不能适应需要。首先在混合集成电路板组装中采用了回流焊工艺,组装焊接的元件多数为片状电容、片状电感,贴装型晶体管及二极管等。随着SMT整个技术发展日趋完善,多种贴片元件(SMC)和贴装器件(SMD)的出现,作为贴装技术一部分的回流焊工艺技术及设备也得到相应的发展,其应用日趋广泛,几乎在所有电子产品领域都已得到应用,而回流焊技术,围绕着设备的改进也经历以下发展阶段。编辑本段热板传导回流焊这类回流焊炉依靠传送带或推板下的热源加热,通过热传导的方式加热基板上的元件,用于采用陶瓷(Al2O3)基板厚膜电路的单面组装,陶瓷基板上只有贴放在传送带上才能得到足够的热量,其结构简单,价格便宜。我国的一些厚膜电路厂在80年代初曾引进过此类设备。回流焊外观编辑本段红外线辐射回流焊:此类回流焊炉也多为传送带式,但传送带仅起支托、传送基板的作用,其加热方式主要依红外线热源以辐射方式加热,炉膛内的温度比前一种方式均匀,网孔较大,适于对双面组装的基板进行回流焊接加热。这类回流焊炉可以说是回流焊炉的基本型。在我国使用的很多,价格也比较便宜。编辑本段红外加热风(Hotair)回流焊:这类回流焊炉是在IR炉的基础上加上热风使炉内温度更均匀,单纯使用红外辐射加热时,人们发现在同样的加热环境内,不同材料及颜色吸收热量是不同的,即(1)式中Q值是不同的,因而引起的温升ΔT也不同,例如IC等SMD的封装是黑色的酚醛或环氧,而引线是白色的金属,单纯加热时,引线的温度低于其黑色的SMD本体。加上热风后可使温度更均匀,而克服吸热差异及阴影不良情况,IR+Hotair的回流焊炉在国际上曾使用得很普遍。编辑本段充氮(N2)回流焊:随着组装密度的提高,精细间距(Finepitch)组装技术的出现,产生了充氮回流焊工艺和设备,改善了回流焊的质量和成品率,已成为回流焊的发展方向。氮气回流焊有以下优点:(1)防止减少氧化(2)提高焊接润湿力,加快润湿速度(3)减少锡球的产生,避免桥接,得到列好的焊接质量得到列好的焊接质量特别重要的是,可以使用更低活性助焊剂的锡膏,同时也能提高焊点的性能,减少基材的变色,但是它的缺点是成本明显的增加,这个增加的成本随氮气的用量而增加,当你需要炉内达到1000ppm含氧量与50ppm含氧量,对氮气的需求是有天壤之别的。现在的锡膏制造厂商都在致力于开发在较高含氧量的气氛中就能进行良好的焊接的免洗焊膏,这样就可以减少氮气的消耗。对于中回流焊中引入氮气,必须进行成本收益分析,它的收益包括产品的良率,品质的改善,返工或维修费的降低等等,完整无误的分析往往会揭示氮气引入并没有增加最终成本,相反,我们却能从中收益。在目前所使用的大多数炉子都是强制热风循环型的,在这种炉子中控制氮气的消耗不是容易的事。有几种方法来减少氮气的消耗量,减少炉子进出口的开口面积,很重要的一点就是要用隔板,卷帘或类似的装置来阻挡没有用到的那部分进出口的空间,另外一种方式是利用热的氮气层比空气轻且不易混合的原理,在设计炉的时候就使得加热腔比进出口都高,这样加热腔内形成自然氮气层,减少了氮气的补偿量并维护在要求的纯度上。编辑本段双面回流焊双面PCB已经相当普及,并在逐渐变得复那时起来,它得以如此普及,主要原因是它给设计者提供了极为良好的弹性空间,从而设计出更为小巧,紧凑的低成本的产品。到今天为止,双面板一般都有通过回流焊接上面(元件面),然后通过波峰焊来焊接下面(引脚面)。目前的一个趋势倾向于双面回流焊,但是这个工艺制程仍存在一些问题。大板的底部元件可能会在第二次回流焊过程中掉落,或者底部焊接点的部分熔融而造成焊点的可靠性问题。已经发现有几种方法来实现双面回流焊:一种是用胶来粘住第一面元件,那当它被翻过来第二次进入回流焊时元件就会固定在位置上而不会掉落,这个方法很常用,但是需要额外的设备和操作步骤,也就增加了成本。第二种是应用不同熔点的焊锡合金,在做第一面是用较高熔点的合金而在做第二面时用低熔点的合金,这种方法的问题是低熔点合金选择可能受到最终产品的工作温度的限制,而高熔点的合金则势必要提高回流焊的温度,那就可能会对元件与PCB本身造成损伤。对于大多数元件,熔接点熔锡表面张力足够抓住底部元件话形成高可靠性的焊点,元件重量与引脚面积之比是用来衡量是否能进行这种成功焊接一个标准,通常在设计时会使用30g/in2这个标准,第三种是在炉子低部吹冷风的方法,这样可以维持PCB底部焊点温度在第二次回流焊中低于熔点。但是潜在的问题是由于上下面温差的产生,造成内应力产生,需要用有效的手段和过程来消除应力,提高可靠性。以上这些制程问题都不是很简单的。但是它们正在被成功解决之中。勿容置疑,在未来的几年,双面板会断续在数量上和复杂性性上有很大发展。编辑本段通孔回流焊通孔回流焊有时也称作分类元件回流焊,正在逐渐兴起。它可以去除波峰焊环节,而成为PCB混装技术中的一个工艺环节。一个最大的好处就是可以在发挥表面贴装制造工艺的优点的同时使用通孔插件来得到较好的机械联接强度。对于较大尺寸的PCB板的平整度不能够使所有表面贴装元器件的引脚都能和焊盘接触,同时,就算引脚和焊盘都能接触上,它所提供的机械强度也往往是不够大的,很容易在产品的使用中脱开而成为故障点。尽管通孔回流焊可发取得偿还好处,但是在实际应用中仍有几个缺点,锡膏量大,这样会增加因助焊剂的挥了冷却而产生对机器污染的程度,需要一个有效的助焊剂残留清除装置。另外一点是许多连接器并没有设计成可以承受回流焊的温度,早期基于直接红外加热的炉子已不能适用,这种炉子缺少有效的热传递效率来处理一般表面贴装元件与具有复杂几何外观的通孔连接器同在一块PCB上的能力。只有大容量的具有高的热传递的强制对流炉子,才有可能实现通孔回流,并且也得到实践证明,剩下的问题就是如何保证通孔中的锡膏与元件脚有一个适当的回流焊温度曲线。随着工艺与元件的改进,通孔回流焊也会越来越多被应用。影响回流焊工艺的因素很多,也很复杂,需要工艺人员在生产中不断研究探讨,将从多个方面来进行探讨。温度曲线的建立温度曲线是指SMA通过回流炉时,SMA上某一点的温度随时间变化的曲线。温度曲线提供了一种直观的方法,来分析某个元件在整个回流焊过程中的温度变化情况。这对于获得最佳的可焊性,避免由于超温而对元件造成损坏,以及保证焊接质量都非常有用。温度曲线采用炉温测试仪来测试,目前市面上有很多种炉温测试仪供使用者选择。预热段该区域的目的是把室温的PCB尽快加热,以达到第二个特定目标,但升温速率要控制在适当范围以内,如果过快,会产生热冲击,电路板和元件都可能受损;过慢,则溶剂挥发不充分,影响焊接质量。由于加热速度较快,在温区的后段SMA内的温差较大。为防止热冲击对元件的损伤,一般规定最大速度为4℃/s。然而,通常上升速率设定为1-3℃/s。典型的升温速率为2℃/s。保温段保温段是指温度从120℃-150℃升至焊膏熔点的区域。其主要目的是使SMA内各元件的温度趋于稳定,尽量减少温差。在这个区域里给予足够的时间使较大元件的温度赶上较小元件,并保证焊膏中的助焊剂得到充分挥发。到保温段结束,焊盘、焊料球及元件引脚上的氧化物被除去,整个电路板的温度达到平衡。应注意的是SMA上所有元件在这一段结束时应具有相同的温度,否则进入到回流段将会因为各部分温度不均产生各种不良焊接现象。回流段在这一区域里加热器的温度设置得最高,使组件的温度快速上升至峰值温度。在回流段其焊接峰值温度视所用焊膏的不同而不同,一般推荐为焊膏的熔点温度加上20-40℃。对于熔点为183℃的63Sn/37Pb焊膏和熔点为179℃的Sn62/Pb36/Ag2焊膏,峰值温度一般为210-230℃,再流时间不要过长,以防对SMA造成不良影响。理想的温度曲线是超过焊锡熔点的“尖端区”覆盖的面积最小。冷却段这段中焊膏内的铅锡粉末已经熔化并充分润湿被连接表面,应该用尽可能快的速度来进行冷却,这样将有助于得到明亮的焊点并有好的外形和低的接触角度。缓慢冷却会导致电路板的分解而进入锡中,从而产生灰暗毛糙的焊点。在极端的情形下,它能引起沾锡不良和减弱焊点结合力。冷却段降温速率一般为3-10℃/s,冷却至75℃即可。桥联焊接加热过程中也会产生焊料塌边,这个情况出现在预热和主加热两种场合,当预热温度在几十至一网络范围内,作为焊料中成分之一的溶剂即会降低粘度而流出,如果其流出的趋势是十分强烈的,会同时将焊料颗粒挤出焊区外的含金颗粒,在熔融时如不能返回到焊区内,也会形成滞留的焊料球。除上面的因素外,SMD元件端电极是否平整良好,电路线路板布线设计与焊区间距是否规范,阻焊剂涂敷方法的选择和其涂敷精度等都会是造成桥联的原因。立碑(曼哈顿现象)片式元件在遭受急速加热情况下发生的翘立,这是因为急热使元件两端存在温差,电极端一边的焊料完全熔融后获得良好的湿润,而另一边的焊料未完全熔融而引起湿润不良,这样促进了元件的翘立。因此,加热时要从时间要素的角度考虑,使水平方向的加热形成均衡的温度分布,避免急热的产生。防止元件翘立的主要因素有以下几点:①选择粘接力强的焊料,焊料的印刷精度和元件的贴装精度也需提高;②元件的外部电极需要有良好的湿润性和湿润稳定性。推荐:温度40℃以下,湿度70%RH以下,进厂元件的使用期不可超过6个月;③采用小的焊区宽度尺寸,以减少焊料熔融时对元件端部产生的表面张力。另外可适当减小焊料的印刷厚度,如选用100μm;④焊接温度管理条件设定也是元件翘立的一个因素。通常的目标是加热要均匀,特别在元件两连接端的焊接圆角形成之前,均衡加热不可出现波动。润湿不良润湿不良是指焊接过程中焊料和电路基板的焊区(铜箔)或SMD的外部电极,经浸润后不生成相互间的反应层,而造成漏焊或少焊故障。其中原因大多是焊区表面受到污染或沾上阻焊剂,或是被接合物表面生成金属化合物层而引起的。譬如银的表面有硫化物、锡的表面有氧化物都会产生润湿不良。另外焊料中残留的铝、锌、镉等超过0.005%以上时,由于焊剂的吸湿作用使活化程度降低,也可发生润湿不良。因此在焊接基板表面和元件表面要做好防污措施。选择合适的焊料,并设定合理的焊接温度曲线。无铅焊接的五个步骤:1选择适当的材料和方法在无铅焊接工艺中,焊接材料的选择是最具挑战性的。因为对于无铅焊接工艺来说,无铅焊料、焊膏、助焊剂等材料的选择是最关键的,也是最困难的。在选择这些材料时还要考虑到焊接元件的类型、线路板的类型,以及它们的表面涂敷状况。选择的这些材料应该是在自己的研究中证明了的,或是权威机构或文献推荐的,或是已有使用的经验。把这些材料列成表以备在工艺试验中进行试验,以对它们进行深入的研究,了解其对工艺的各方面的影响。对于焊接方法,要根据自己的实际情况进行选择,如元件类型:表面安装元件、通孔插装元件;线路板的情况;板上元件的多少及分布情况等。对于表面安装元件的焊接,需采用回流焊的方法;对于通孔插装元件,可根据情况选择波峰焊、浸焊或喷焊法来进行焊接。波峰焊更适合于整块板(大型)上通孔插装元件的焊接;浸焊更适合于整块板(小型)上或板上局部区域通孔插装元件的焊接;局喷焊剂更适合于板上个别元件或少量通孔插装元件的焊接。另外,还要注意的是,无铅焊接的整个过程比含铅焊料的要长,而且所需的焊接温度要高,这是由于无铅焊料的熔点比含铅焊料的高,而它的浸润性又要差一些的缘故。在焊接方法选择好后,其焊接工艺的类型就确定了。这时就要根据焊接工艺要求选择设备及相关的工艺控制和工艺检查仪器,或进行升级。焊接设备及相关仪器的选择跟焊接材料的选择一样,也是相当关键的。2确定工艺路线和工艺条件在第一步完成后,就可以对所选的焊接材料进行焊接工艺试验。通过试验确定工艺路线和工艺条件。在试验中,需要对列表选出的焊接材料进行充分的试验,以了解其特性及对工艺的影响。这一步的目的是开发出无铅焊接的样品。3开发健全焊接工艺这一步是第二步的继续。它是对第二步在工艺试验中收集到的试验数据进行分析,进而改进材料、设备或改变工艺,以便获得在实验室条件下的健全工艺。在这一步还要弄清无铅合金焊接工艺可能产生的沾染知道如何预防、测定各种焊接特性的工序能力(CPK)值,以及与原有的锡/铅工艺进行比较。通过这些研究,就可开发出焊接工艺的检查和测试程序,同时也可找出一些工艺失控的处理方法。4.还需要对焊接样品进行可靠性试验,以鉴定产品的质量是否达到要求。如果达不到要求,需找出原因并进行解决,直到达到要求为止。一旦焊接产品的可靠性达到要求,无铅焊接工艺的开发就获得成功,这个工艺就为规模生产做好了准准备就绪后的操作一切准备就绪,现在就可以从样品生产转变到工业化生产。在这时,仍需要对工艺进行****以维持工艺处于受控状态。5控制和改进工艺无铅焊接工艺是一个动态变化的舞台。工厂必须警惕可能出现的各种问题以避免出现工艺失控,同时也还需要不断地改进工艺,以使产品的质量和合格晶率不断得到提高。对于任何无铅焊接工艺来说,改进焊接材料,以及更新设备都可改进产品的焊接性能。编辑本段工艺简介通过重新熔化预先分配到印制板焊盘上的膏状软钎焊料,实现表面组装元器件焊端或引脚与印制板焊盘之间机械与电气连接的软钎焊。1、回流焊流程介绍回流焊加工的为表面贴装的板,其流程比较复杂,可分为两种:单面贴装、双面贴装。A,单面贴装:预涂锡膏→贴片(分为手工贴装和机器自动贴装)→回流焊→检查及电测试。B,双面贴装:A面预涂锡膏→贴片(分为手工贴装和机器自动贴装)→回流焊→B面预涂锡膏→贴片(分为手工贴装和机器自动贴装)→回流焊→检查及电测试。
㈧ 你好,请问贴片电容上焊不良是怎么会事,不良率是%3
锡膏放置久了,粘性变差,有时焊不住贴片造成不良.新开启的锡膏不会有这样的问题。
贴片机有时也贴偏,贴偏的一过炉就焊点不良.
3%不良已经是控制的比较好的了
㈨ BGA焊接不良率
这个不好说,对焊接不良的影响因素有以下几个,一,焊接平台的焊接参数。二,焊接人员的技术能力。三,焊接环境。
所以,要提升焊接良率,多从上述这几个方面进行改进。