导线用等离子怎么焊接
1、等离子切割是不能用来焊接的因为它们所产生的电弧方式是不一样的。
2、等离内子切割只要电源(容焊机)和压缩空气就可以切割了。
3、而等离子焊电弧焊接时需要用氢气或氩气来保护的,成本不是太高和钨极氩弧焊差不多。
4、但它所焊接的工件比钨极氩弧焊要小巧和精细的多。
⑵ 什么是等离子焊接
由于等离子电弧具有较高的能量密度,温度及刚直性(能量密度可达10000到100000w/平方厘米,弧柱中心温度可达18000—24000K以上,焰流速度可达300m/s以上),因此与一般电弧焊相比,等离子电弧具有下列优点:
1.能量密度大,电弧方向性强,融透能力强,在不开坡口,不加填充焊丝的情况下可一次焊透8至10mm厚的不锈钢板,与钨极氩弧焊相比,在相同的焊缝熔深情况下,等离子焊接速度要快得多。
2.焊缝质量对弧长的变化不敏感。这是由于等离子弧的形态接近圆柱形,发散角很小(约5度),且挺直性好,弧长变化对加热斑点的面积影响很小,因此容易获得均匀的焊缝形状。若按钨极氩弧焊的扩散角为90度,等离子焊扩散角为5度计算,电弧断面变化20%时,钨极氩弧焊的焊炬高度只允许变化±0.12mm,而等离子焊则可变化±1.2mm,这对保证焊缝成形和焊缝均匀性都十分有益。
3.钨极缩在水冷铜喷嘴内部,不可能与工件接触,因此可有效避免焊缝金属产生夹钨现象。另外,电弧搅动性好,熔池温度高,有利于熔池内气体的释放。
4.等离子电弧由于压缩效应及热电离度较高,电流较小时仍很稳定。配用新型的电子电源,焊接电流可以小到0.1A,这样小的电流也能达到电弧稳定燃烧,因此特别适合焊接微型紧密零件。
5.焊缝的深宽比大,热影响区小,适合焊接某些可焊性差的材料和双金属等。
6.可以产生稳定的小孔效应,通过小孔效应,正面施焊的时候可以获得良好的单面焊双面成型。
7.焊接成本低,与一般氩弧焊相比,可省电1/3~1/2,省气1/2~2/3,且在焊接厚度较小的情况下,无需填丝。
补充:
借助水冷喷嘴对电弧的拘束作用,获得较高能量密度的等离子弧进行焊接的方法,叫等离子弧焊。等离子弧焊是一种不熔化极电弧焊,是利用电极和焊件之间的压缩电弧(转移电弧)来实现焊接的。所用的电极通常是钨极,产生等离子弧的等离子气宁可用氩气、氮气、氦气或其中两者之混合气,同时还通过喷嘴用惰性气体保护。焊接时可以外加填充金属,也可以不加填充金属。
等离子弧焊焊接时,由于其电弧挺直,能量密度大,因而电弧穿透力强。等离子弧焊焊接时产生的小孔效应,对于一定厚度范围内的大多数金属可以进行Ⅰ形坡口对接,并能保证熔透和焊缝均匀一致。因此,等离子弧焊的生产率高、焊缝质量好。但等离子弧焊设备
(包括喷嘴)比较复杂,对焊接参数的控制要求较高。
钨极惰性气体保护焊可焊接的绝大多数金属,均可采用等离子弧焊焊接。与之相比,对于1mm以下的极薄金属的焊接,用等离子弧焊较易进行。
⑶ 等离子焊接是怎样的工作原理
网络搜 “等离子弧焊”。
⑷ 等离子焊接的原理及特点
原理:等离子弧切割是一种常用的金属和非金属材料切割工艺方法。它利用高速、高温和高能的等离子气流来加热和熔化被切割材料,并借助内部的或者外部的高速气流或水流将熔化材料排开直至等离子气流束穿透背面而形成割口。
等离子弧的特点:
(1)能贵高度集中由于等离子弧有很高的导电性,能承受很大的电流密度,因而可以通过极大的电流,故具有极高的温度;又因其截面很小,能量高度集中,所以一般等离子弧在喷嘴出口中心温度达20000℃左右,而用于切割的等离子弧在喷嘴附近温度可达30000℃左右。
(2)极大的温度梯度由于等离子弧横截面积很小(直径一般小于3mm),从温度最高的中心到温度低的边沿,温度变化非常大,所以说其温度梯度极大。
(3)具有很强的吹力等离子发生装置内通入的常温压缩气体,由于受到电弧的高温而膨胀,使气体压力增高,能过喷嘴细孔的气体流速甚至可超过声速,故等离子体具有较强的冲击力。
(4)良好的电弧稳定性由于等离子弧电离程度很高,所以放电过程稳定,弧柱呈图柱形,挺直度好,使焊件受热面积几乎不变,当弧长变化时,电弧电压和焊接电流变化都非常小。
(4)导线用等离子怎么焊接扩展阅读
1、优点
由于等离子弧能量集中、温度高、具有很大的机械冲击力,并且电弧稳定,因而等离子弧切割具有以下优点:
(1)可以切割任何黑色和有色金属等离子弧可以切割各种高熔点金属及其他切割方法不能切割的金属,如不锈钢、耐热钢、钛、钼、钨、铸造铁、铜、铝及其合金。切割不锈钢、铝等厚度可达200mm以上。
(2)可切割各种非金属材料采用非转移型电弧时,由于工件不接电,所以在这种情况下能切割各种非导电材料,如耐火砖、混凝土、花岗石、碳化硅等。
(3)切割速度快、生产率高在目前采用的各种切割方法中,等离子切割的速度比较快,生产率也比较高。例如,切lOmm的铝板,速度可达(200~300)m/h;切12mm厚的不锈钢,割速可达(100-130)m/h。
(4)切割质量高等离子弧切割时,能得到比较狭窄、光洁、整齐、无粘渣、接近于垂直的切口,而且切口的变形和热影响区较小,其硬度变化也不大。
2、缺点
(1)设备比氧一乙炔切割复杂、投资较大。
(2)电源的空载电压较高,要注意安全。
(3)切割时产生的气体会影响人体健康,所以操作时应注意通风。
⑸ 等离子焊都可以焊什么
等离子焊接应用: 微束离子焊接 微束离子通常用于焊接薄板材(厚度为0.1mm)、焊丝和网孔部分。针型挺直的弧能将弧的偏离和变形减到最小。虽然等效的TIG 弧更扩散,但更新的晶体管化的(TIG)电源能在低电流下产生非常稳定的弧。 中等电流焊接 在熔化方式下可选择该方法进行传统的TIG焊。 它的优点是能产生较深的熔深(愿于较高的等离子气流),能容许包括药皮(焊炬中的焊条)在内的较大的表面污染。主要缺点是焊炬笨重,使手工焊接比较困难。在机械化焊接中,应该更加注意焊炬的维护以保证稳定的性能。 小孔型焊接 可用的几点优势是:熔深较深、焊接速度快。与TIG 弧相比,它能焊透厚度达10mm的板材,但使用单道焊接技术时,通常将板材厚度限制在6mm内。通常的方法是使用有填充物的小孔,以确保焊道断面的光滑(无齿边)。由于厚度达到了15mm,要使用6mm厚的钝边进行V型接头准备。也可使用双道焊技术,在熔化方式下通过添加填充焊丝,自动生成第一和第二条焊道。 必须精确地平衡焊接参数、等离子气流速度和填充焊丝的添加量(填入小孔)以维护孔和焊接熔池的稳定,这一技术只适用于机械化焊接。虽然通过使用脉冲电流,该技术能用于位置焊接,但它通常是用于对较厚的板材材料(超过3mm)进行高速平焊。进行管道焊接时,必须精确地控制溢出电流和等离子气流速度以确保小孔关闭。
⑹ 等离子焊怎么使用
CT-312 CT-416钨极氩弧焊/焊条手弧焊/空气等离子切割机 三用机。 等离子切割机用压缩空气。配套空气压缩机即可。 钨极氩弧焊,用氩气。 焊条手弧焊不用任何气体。
⑺ 等离子焊需要焊丝吗
看要求,可要可不要
⑻ 电焊:说说怎么样才能焊好薄件
焊机很重要,然后是电流、手法和角度要凭经验 ;
正常焊接有时有反向的操作方式 ,一般来说装饰焊的要求这些足够了。
电焊是焊条电弧的俗称。利用焊条通过电弧高温融化金属部件需要连接的地方而实现的一种焊接操作。
电焊的基本工作原理是通过常用的220V电压或者380V的工业用电,通过电焊机里的减压器降低了电压,增强了电流,并使电能产生巨大的电弧热量融化焊条和钢铁,而焊条熔融使钢铁之间的融合性更高。电焊条的外层的药皮、CO2焊接喷出CO2气体起防止金属融化后氧化的作用(不信你把药粉敲了看能焊接不)。
电焊的种类比较多,目前常用的有以下几种
电弧焊
电弧焊是目前应用最广泛的焊接方法。它包括有:手弧焊、埋弧焊、钨极气体保护电弧焊、等离子弧焊、熔化极 气体保护焊等。绝大部分电弧焊是以电极与工件之间燃烧的电弧作热源。在形成接头时,可以采用也可以不采用填充金属。所用 的电极是在焊接过程中熔化的焊丝时,叫作熔化极电弧焊,诸如手弧焊、埋弧焊、气体保护电弧焊、管状焊丝电 弧焊等;所用的电极是在焊接过程中不熔化的碳棒或钨棒时,叫作不熔化极电弧焊,诸如钨极氩弧焊、等离子弧 焊等。
相关书籍
(1)手弧焊
手弧焊是各种电弧焊方法中发展最早、目前仍然应用最广的一种焊接方法。它是以外部涂有涂料的焊条作电极和 填充金属,电弧是在焊条的端部和被焊工件表面之间燃烧。涂料在电弧热作用下一方面可以产生气体以保护电弧 ,另一方面可以产生熔渣覆盖在熔池表面,防止熔化金属与周围气体的相互作用。熔渣的更重要作用是与熔化金 属产生物理化学反应或添加合金元素,改善焊缝金属性能。手弧焊设备简单、轻便,操作灵活。可以应用于维修及装配中的短缝的焊接,特别是可以用于难以达到的部位的 焊接。手弧焊配用相应的焊条可适用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金。
(2)埋弧焊
埋弧焊是以连续送时的焊丝作为电极和填充金属。焊接时,在焊接区的上面覆盖一层颗粒状焊剂,电弧在焊剂层 下燃烧,将焊丝端部和局部母材熔化,形成焊缝。在电弧热的作用下,上部分焊剂熔化熔渣并与液态金属发生冶金反应。熔渣浮在金属熔池的表面,一方面可以保 护焊缝金属,防止空气的污染,并与熔化金属产生物理化学反应,改善焊缝金属的成分及性能;另一方面还可以 使焊缝金属缓慢泠却。埋弧焊可以采用较大的焊接电流。与手弧焊相比,其最大的优点是焊缝质量好,焊接速度高。因此,它特别适于 焊接大型工件的直缝的环缝。而且多数采用机械化焊接。埋弧焊已广泛用于碳钢、低合金结构钢和不锈钢的焊接。由于熔渣可降低接头冷却速度,故某些高强度结构钢、 高碳钢等也可采用埋弧焊焊接。
(3)钨极气体保护电弧焊
这是一种不熔化极气体保护电弧焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的。焊接过程中钨极不 熔化,只起电极的作用。同时由焊炬的喷嘴送进氩气或氦气作保护。还可根据需要另外添加金属。在国际上通称 为TIG焊。钨极气体保护电弧焊由于能很好地控制热输入,所以它是连接薄板金属和打底焊的一种极好方法。这种方法几乎 可以用于所有金属的连接,尤其适用于焊接铝、镁这些能形成难熔氧化物的金属以及像钛和锆这些活泼金属。这 种焊接方法的焊缝质量高,但与其它电弧焊相比,其焊接速度较慢。
(4)等离子弧焊
等离子弧焊也是一种不熔化极电弧焊。它是利用电极和工件之间地压缩电弧(叫转发转移电弧)实现焊接的。所 用的电极通常是钨极。产生等离子弧的等离子气可用氩气、氮气、氦气或其中二者之混合气。同时还通过喷嘴用 惰性气体保护。焊接时可以外加填充金属,也可以不加填充金属。等离子弧焊焊接时,由于其电弧挺直、能量密度大、因而电弧穿透能力强。等离子弧焊焊接时产生的小孔效应, 对于一定厚度范围内的大多数金属可以进行不开坡口对接,并能保证熔透和焊缝均匀一致。因此,等离子弧焊的 生产率高、焊缝质量好。但等离子弧焊设备(包括喷嘴)比较复杂,对焊接工艺参数的控制要求较高。钨极气体保护电弧焊可焊接的绝大多数金属,均可采用等离子弧焊接。与之相比,对于1mm以下的极薄的金属的焊 接,用等离子弧焊可较易进行。
(5)熔化极气体保护电弧焊
这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的气体保护电弧来进行焊接 的。熔化极气体保护电弧焊通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。以氩气或氦气为保护气时 称为熔化极惰性气体保护电弧焊(在国际上简称为MIG焊);以惰性气体与氧化性气体(O2,CO2)混合气为保护气体 时,或以CO2气体或CO2+O2混合气为保护气时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活性气 体保护电弧焊(在国际上简称为MAG焊)。熔化极气体保护电弧焊的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优 点。熔化极活性气体保护电弧焊可适用于大部分主要金属,包括碳钢、合金钢。熔化极惰性气体保护焊适用于不 锈钢、铝、镁、铜、钛、锆及镍合金。利用这种焊接方法还可以进行电弧点焊。
(6)管状焊丝电弧焊
管状焊丝电弧焊也是利用连续送进的焊丝与工件之间燃烧的电弧为热源来进行焊接的,可以认为是熔化极气体保 护焊的一种类型。所使用的焊丝是管状焊丝,管内装有各种组分的焊剂。焊接时,外加保护气体,主要是CO。焊 剂受热分解或熔化,起着造渣保护溶池、渗合金及稳弧等作用。管状焊丝电弧焊除具有上述熔化极气体保护电弧焊的优点外,由于管内焊剂的作用,使之在冶金上更具优点。管 状焊丝电弧焊可以应用于大多数黑色金属各种接头的焊接。管状焊丝电弧焊在一些工业先进国家已得到广泛应用。
电阻焊
这是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。电阻焊包括:电阻点焊,涂焊,缝焊,高频焊,闪光对焊。由于 电渣焊更具有独特的特点,故放在后面介绍。这里主要介绍几种固体电阻热为能源的电阻焊,主要有点焊、缝焊 、凸焊及对焊等。电阻焊一般是使工件处在一定电极压力作用下并利用电流通过工件时所产生的电阻热将两工件之间的接触表面熔 化而实现连接的焊接方法。通常使用较大的电流。为了防止在接触面上发生电弧并且为了锻压焊缝金属,焊接过 程中始终要施加压力。进行这一类电阻焊时,被焊工件的表面善对于获得稳定的焊接质量是头等重要的。因此,焊前必须将电极与工件 以及工件与工件间的接触表面进行清理。点焊、缝焊和凸焊的牾在于焊接电流(单相)大(几千至几万安培),通电时间短(几周波至几秒),设备昂贵 、复杂,生产率高,因此适于大批量生产。主要用于焊接厚度小于3mm的薄板组件。各类钢材、铝、镁等有色金属 及其合金、不锈钢等均可焊接。
高能束焊
这一类焊接方法包括:电子束焊和激光焊。
(1)电子束焊
电子束焊是以集中的高速电子束轰击工件表面时所产生的热能进行焊接的方法。电子束焊接时,由电子枪产生电子束并加速。常用的电子束焊有:高真空电子束焊、低真空电子束焊和非真空电 子束焊。前两种方法都是在真空室内进行。焊接准备时间 (主要是抽真空时间)较长,工件尺寸受真空室大小限 制。电子束焊与电弧焊相比,主要的特点是焊缝熔深大、熔宽小、焊缝金属纯度高。它既可以用在很薄材料的精密焊 接,又可以用在很厚的(最厚达300mm)构件焊接。所有用其它焊接方法能进行熔化焊的金属及合金都可以用电子 束焊接。主要用于要求高质量的产品的焊接。还能解决异种金属、易氧化金属及难熔金属的焊接。但不适于大批 量产品。
(2)激光焊
激光焊是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接。这种焊接方法通常有连续功率激光焊 和脉冲功率激光焊。激光焊优点是不需要在真空中进行,缺点则是穿透力不如电子束焊强。激光焊时能进行精确的能量控制,因而可 以实现精密微型器件的焊接。它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。
钎焊
钎焊的能源可以是化学反应热,也可以是间接热能。它是利用熔点比被焊材料的熔点低的金属作钎料,经过加热 使钎料熔化,靠毛细管作用将钎料及入到接头接触面的间隙内,润湿被焊金属表面,使液相与固相之间互扩散而 形成钎焊接头。因此,钎焊是一种固相兼液相的焊接方法。钎焊加热温度较低,母材不熔化,而且也不需施加压力。但焊前必须采取一定的措施清除被焊工件表面的油污、 灰尘、氧化膜等。这是使工件润湿性好、确保接头质量的重要保证。钎料的液相线湿度高于450℃而低于母材金属的熔点时,称为硬钎焊;低于450℃时,称为软钎焊。根据热源或加热方法不同钎焊可分为:火焰钎焊、感应 钎焊、炉中钎焊、浸沾钎焊、电阻钎焊等。钎焊时由于加热温度比较低,故对工件材料的性能影响较小,焊件的应力变形也较小。但钎焊接头的强度一般比 较低,耐热能力较差。钎焊可以用于焊接碳钢、不锈钢、高温合金、铝、铜等金属材料,还可以连接异种金属、金属与非金属。适于焊 接受载不大或常温下工作的接头,对于精密的、微型的以及复杂的多钎缝的焊件尤其适用。
其它方法
这些焊接方法属于不同程度的专门化的焊接方法,其适用范围较窄。主要包括以电阻热为能源的电渣焊、高频焊 ;以化学能为焊接能源的气焊、气压焊、爆炸焊;以机械能为焊接能源的摩擦焊、冷压焊、超声波焊、扩散焊。
(1)电渣焊
如前面所述,电渣焊是以熔渣的电阻热为能源的焊接方法。焊接过程是在立焊位置、在由两工件端面与两侧水冷 铜滑块形成的装配间隙内进行。焊接时利用电流通过熔渣产生的电阻热将工件端部熔化。根据焊接时所用的电极形状,电渣焊分为丝极电渣焊、板极电渣焊和熔嘴电渣焊。电渣焊的优点是:可焊的工件厚度大(从30mm到大于1000mm),生产率高。主要用于在断面对接接头及丁字接头 的焊接。电渣焊可用于各种钢结构的焊接,也可用于铸件的组焊。电渣焊接头由于加热及冷却均较慢,热影响区宽、显微 组织粗大、韧性、因此焊接以后一般须进行正火处理。
(2)高频焊
高频焊是以固体电阻热为能源。焊接时利用高频电流在工件内产生的电阻热使工件焊接区表层加热到熔化或接近 的塑性状态,随即施加(或不施加)顶锻力而实现金属的结合。因此它是一种固相电阻焊方法。高频焊根据高频电流在工件中产生热的方式可分为接触高频焊和感应高频焊。接触高频焊时,高频电流通过与工 件机械接触而传入工件。感应高频焊时,高频电流通过工件外部感应圈的耦合作用而在工件内产生感应电流。高频焊是专业化较强的焊接方法,要根据产品配备专用设备。生产率高,焊接速度可达30m/min。主要用于制造管 子时纵缝或螺旋缝的焊接。
(3)气焊
气焊是用气体火焰为热源的一种焊接方法。应用最多的是以乙炔气作燃料的氧-乙炔火焰。由于设备简单使操作 方便,但气焊加热速度及生产率较低,热影响区较大,且容易引起较大的变形。气焊可用于很多黑色金属、有色金属及合金的焊接。一般适用于维修及单件薄板焊接。
(4)气压焊
气压焊和气焊一样,气压焊也是以气体火焰为热源。焊接时将两对接的工件的端部加热到一定温度,后再施加足 够的压力以获得牢固的接头。是一种固相焊接。气压焊时不加填充金属,常用于铁轨焊接和钢筋焊接。
(5)爆炸焊
爆炸焊也是以化学反应热为能源的另一种固相焊接方法。但它是利用炸药爆炸所产生的能量来实现金属连接的。在爆炸波作用下,两件金属在不到一秒的时间内即可被加速撞击形成金属的结合。在各种焊接方法中,爆炸焊可以焊接的异种金属的组合的范围最广。可以用爆炸焊将冶金上不相容的两种金属焊 成为各种过渡接头。爆炸焊多用于表面积相当大的平板包覆,是制造复合板的高效方法。
(6)摩擦焊
摩擦焊是以机械能为能源的固相焊接。它是利用两表面间机械摩擦所产生的热来实现金属的连接的。摩擦焊的热量集中在接合面处,因此热影响区窄。两表面间须施加压力,多数情况是在加热终止时增大压力,使 热态金属受顶锻而结合,一般结合面并不熔化。摩擦焊生产率较高,原理上几乎所有能进行热锻的金属都能摩擦焊接。摩擦焊还可以用于异种金属的焊接。要适 用于横断面为圆形的最大直径为100mm的工件。
(7)超声波焊
超声波焊也是一种以机械能为能源的固相焊接方法。进行超声波焊时,焊接工件在较低的静压力下,由声极发出 的高频振动能使接合面产生强裂摩擦并加热到焊接温度而形成结合。超声波焊可以用于大多数金属材料之间的焊接,能实现金属、异种金属及金属与非金属间的焊接。可适用于金属 丝、箔或2~3mm以下的薄板金属接头的重复生产。(8)扩散焊 扩散焊一般是以间接热能为能源的固相焊接方法。通常是在真空或保护气氛下进行。焊接时使两被焊工件的表面 在高温和较大压力下接触并保温一定时间,以达到原子间距离,经过原子朴素相互扩散而结合。焊前不仅需要清 洗工件表面的氧化物等杂质,而且表面粗糙度要低于一定值才能保证焊接质量。扩散焊对被焊材料的性能几乎不产生有害作用。它可以焊接很多同种和异种金属以及一些非金属材料,如陶瓷等。扩散焊可以焊接复杂的结构及厚度相差很大的工件。
⑼ 等离子弧焊接和切割什么原理
————武汉金嘉数控技术篇:
1.1等离子弧的产生:
(1)等离子弧的概念:
自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。
等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。
自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达105~106W/cm2,电弧温度可高达24000~5000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在104W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。
(2)等离子弧的产生
在钨极与喷嘴之间或钨极与工件之间加一较高电压,经高频振荡使气体电离形成自由电弧,该电弧受下列三个压缩作用形成等离子弧。
①机械压缩效应(作用)——电弧经过有一定孔径的水冷喷嘴通道,使电弧截面受到拘束,不能自由扩展。
②热压缩效应——当通入一定压力和流量的氩气或氮气时,冷气流均匀地包围着电弧,使电弧外围受到强烈冷却,迫使带电粒子流(离子和电子)往弧柱中心集中,弧柱被进一步压缩。
③电磁收缩效应——定向运动的电子、离子流就是相互平行的载流导体,在弧柱电流本身产生的磁场作用下,产生的电磁力使孤柱进一步收缩。
电弧经过以上三种压缩效应后,能量高度集中在直径很小的弧柱中,弧柱中的气体被充分电离成等离子体,故称为等离子弧。
当小直径喷嘴,大的气体流量和增大电流时,等离子焰自喷嘴喷出的速度很高,具有很大的冲击力,这种等离子弧称为“刚性弧”,主要用于切割金属。反之,若将等离子弧调节成温度较低、冲击力较小时,该等离子弧称为“柔性弧”,主要用于焊接。
1.2等离子弧焊接
1.2.1基本知识
用等离子弧作为热源进行焊接的方法称为等离子孤焊接。
焊接时离子气(形成离子弧)和保护气(保护熔池和焊缝不受空气的有害作用)均为氩气。
等离子弧焊所用电极一般为钨极(与钨极氩弧焊相同,国内主要采用钍钨极和铈钨极,国外还采用锆钨极和锆极),有时还需填充金属(焊丝)。一般均采用直流正接法(钨棒接负极)。故等离子弧焊接实质上是一种具有压缩效应的钨极气体保护焊。
⑽ 等离子弧焊接有哪三种方法
等离子弧焊(PAW,Plasma Arc Welding)是利用等离子弧作为热源的焊接方法。气体由电弧加热产生离解,在高速通过水冷喷嘴时受到压缩,增大能量密度和离解度,形成等离子弧。它的稳定性、发热量和温度都高于一般电弧,因而具有较大的熔透力和焊接速度。形成等离子弧的气体和它周围的保护气体一般用氩。根据各种工件的材料性质,也有使用氦、氮、氩或其中两者混合的混合气体的。
等离子弧有两种工作方式。一种是“非转移弧”,电弧在钨极与喷嘴之间燃烧,主要用於等离子喷镀或加热非导电材料。
另一种是“转移弧”,电弧由辅助电极高频引弧后,电弧燃烧在钨极与工件之间,用於焊接。形成焊缝的方式有熔透式和穿孔式两种。前一种形式的等离子弧只熔透母材,形成焊接熔池,多用於0.8~3毫米厚的板材焊接;后一种形式的等离子弧只熔穿板材,形成钥匙孔形的熔池,多用於 3~12毫米厚的板材焊接。此外,还有小电流的微束等离子弧焊,特别适合於0.02~1.5毫米的薄板焊接。
等离子弧焊广泛用于工业生产,特别是航空航天等军工和尖端工业技术所用的铜及铜合金、钛及钛合金、合金钢、不锈钢、钼等金属的焊接,如钛合金的导弹壳体,飞机上的一些薄壁容器等。