什么是窄间隙焊接
① 窄间隙焊时,其坡口形式大多为什么形
窄间隙焊可以应用抄于平焊袭、垂直焊、横焊和全位置焊。从材料上,可以焊接碳钢、低合金钢和铝合金等。按热输入量的大小,可将窄间隙焊分为两种类型:一种是采用小直径焊丝、小电流,因而热输入量低,主要用于焊接热敏感性材料和全位置时焊接等;另一种为粗丝,采用较大的焊接电流,热输入量较高,主要用于焊接普通碳钢,为的是提高生产率。
② 窄间隙埋弧焊优点
窄间隙焊接是厚板焊接领域的一项先进技术。与普通坡口的埋弧焊相比,窄间隙焊具专有无可比拟的优越性。属如坡口窄、焊缝金属填充量少,可以节省大量的焊材和焊接工时;由于窄间隙焊时热输入量较低,使焊缝金属和热影响区的组织明显细化,从而提高其力学性能,特别是塑性和韧性。
③ 窄间隙焊焊接工艺及参数不符合要求
窄间隙焊应用于直复径16mm及以上钢筋的现场制水平连接。焊接时,钢筋端部应置于铜模中,并应留出一定间隙,连续焊接,熔化钢筋端面,使熔敷金属填充间隙并形成接头;其焊接工艺应符合下列要求:
(1)钢筋端面应平整。
(2)宜选用低氢型焊接材料。
(3)从焊缝根部引弧后应连续进行焊接,左右来回运弧,在钢筋端面处电弧应少许停留,并使熔合;
(4)当焊至端面间隙的4/5高度后,焊缝逐渐扩宽;当熔池过大时,应改连续焊为断续焊;
(5)焊缝余高应为2~4mm,且应平缓过渡至钢筋表面。
窄间隙焊端面间隙和焊接参数,见表3-42。
表3-42窄间隙焊端面间隙和焊接参数
④ 钢筋闪光对焊和窄间隙焊的区别
钢筋闪光对焊:将两钢筋安放成对接形式,利用对焊机使两端钢筋接触,通过低电压的强电流,利用电阻热使接触点金属熔化,产生强烈飞溅,形成闪光,待钢筋被加热到一定温度变软后,迅速施加顶锻力进行轴向加压完成的一种压焊方法,形成对焊接头。钢筋闪光对焊工艺常用的连续闪光焊、预热闪光焊和闪光-预热-闪光焊。对Ⅳ级钢筋有时在焊接后还进行通电热处理。闪光对焊是广泛用于钢筋纵向连接及预应力钢筋与螺丝端杆的焊接。
窄间隙焊:采用厚板对接接头,焊前不开坡口或只开小角度坡口,并留有窄而深的间隙,气体保护焊或埋弧焊的多层焊完成整条焊缝的高效率焊接法作为一种特别工业技术,具有以下技术特征:
(1)应用现有的弧焊方法来奥莉薇完成填充方式的熔化焊连接;
(2)焊缝截面积比传统弧焊方法至少减少30%以上;
(3)坡口形状多为具有极小坡口面角度(0.50-70)的V形或U兴。或者I形;
(4)一般采用单道多层和双道多层熔敷方式,且板厚方向上熔敷方式固定;
(5)焊接线能量相对较小(双道多层方式时最为突出);
(6)在深窄坡口内的气、丝,电导入,侧壁熔合控制,气渣联合保护方式的脱渣等方面分别采用了特殊技术。
⑤ 怎样实现细焊丝窄间隙熔化极氩弧焊工艺
氩弧焊的技术要求:
(一)非熔化极氩弧焊[1] (TIG焊)
非熔化极氩弧焊时,电极只起发射电子、产生电弧的作用,电极本身不熔化,常采用熔点较高的钍钨棒或铈钨棒作为电极,所以又叫钨极氩弧焊。焊接过程可以用手工进行,也可以自动进行。
焊接时,在钨极与工件间产生电弧,填充金属从一侧送入,在电弧热的作用下,填充金属与工件熔融在一起形成焊缝。为了防止电极的熔化和烧损,焊接电流不能过大,因此,钨极氩弧焊通常适用于焊接4mm以下的薄板,如管子对接、管子与管板的连接。
(二)熔化极氩弧焊(MIG焊)
熔化极氩弧焊是利用金属焊丝作为电极,电弧产生在焊丝和工件之间,焊丝不断送进并熔化过渡到焊缝中去。因此熔化极氩弧焊所用焊接电流可大大提高,适用于中、厚板的焊接,如化工容器筒体的焊接。焊接过程可采用自动或半自动方式。
熔化极氩弧焊时的金属熔滴过渡,主要是喷射过渡的形式。喷射过渡的特点是在焊接电压较高、焊接电流超过某临界值时,熔滴呈雾状的细滴沿焊丝轴向高速射入溶池。喷射过渡时不发生短路现象,电弧燃烧非常稳定,飞溅现象消失,焊缝成形好,熔透深度增加,所以溶化极氩弧焊主要用于焊接厚度为3mm以上的金属。
由于氩气比较稀缺,使得氩弧焊的焊接成本较高。故目前主要用来焊接易氧化的有色金属(如铝、镁及其合金)、稀有金属(如钼、钛及其合金)、高强度合金钢及一些特殊用途的高合金钢(如不锈钢、耐热钢)。
⑥ 什么叫窄间隙埋弧焊
窄间隙埋弧焊出现于上世纪80年代,很快被应用于工业生产,它的主要应用领域是低合金钢厚壁容器及其它重型焊接结构。窄间隙埋弧焊的焊接接头具有较高的抗延迟冷裂能力,其强度性能和冲击韧性优于传统宽坡口埋弧焊接头,与传统埋弧焊相比,总效率可提高50%~80%;可节约焊丝38%~50%,焊剂56%~64.7%。窄间隙埋弧焊已有各种单丝、双丝和多丝的成套设备出现,主要用于水平或接近水平位置的焊接,并且要求焊剂具有焊接时所需的载流量和脱渣效果,从而使焊缝具有合适的力学性能。一般采用多层焊,由于坡口间隙窄,层间清渣困难,对焊剂的脱渣性能要求秀高,尚需发展合适的焊剂。
尽管SAW工艺具有如下优点:高的熔敷速度,低的飞溅和电弧磁偏吹,能获得焊道形状好、质量高的焊缝,设备简单等,但是由于在填充金属、焊剂和技术方面取得的最新进展,使日本、欧洲和俄罗斯等国家和地区在焊接碳钢、低合金钢和高合金钢时广泛采用NG-SAW工艺。
NG-SAW用的焊丝直径在2~5mm之间,很少使用直径小于2mm的焊丝。据报导,最佳焊丝尺寸为3mm。4mm直径焊丝推荐给厚度大于140mm的钢板使用,而5mm直径焊丝则用于厚度大于670mm的钢板。
NG-SAW焊道熔敷方案的选择与许多因素有关。
单道焊仅在使用专为窄坡口内易于脱渣而开发的自脱渣焊剂时才采用。然而,尽管使用较高的坡口填充速度,单道焊方案较之多道焊方案仍有一些不足之处。除需要使用非标准焊剂之外,它还要求焊丝在坡口内非常准确地定位,对间隙的变化有较严格的限制。对焊接参数,特别是电压的波动以及凝固裂纹的敏感性大,限制了这一工艺的适应性。单道焊在日本使用较多。
日本以外的其他国宝广泛使用多道焊,其特点是坡口填充速度相当低,但其适应性强,可靠性高,产生缺陷少。尽管焊接成本较高,但这一方案的最重要之处在于,允许使用标准的或略为改进的焊剂,以及普通SAW焊接工艺。
⑦ 窄间隙埋弧焊的结构设计
窄间隙埋弧焊接时,可进行每层一道、每层两道或每层三道焊接。其中每层一道的焊接虽然效率较高,但易引起侧壁熔合不良、夹渣、焊缝成型系数过小(易引起结晶裂纹)、脱渣不易等问题,在窄间隙埋弧焊接中很少应用。而每层三道则由于坡口的加宽而降低了效率。因此,每层两道的焊接得到了普遍应用。
在每层两道的窄间隙埋弧焊接中,为了保证坡口侧壁的良好熔合而不出现夹渣等焊接缺陷,在每一个焊道焊接时,焊丝端头必须偏向各自接近的坡口侧壁。为了实现这一点,目前流行的大致有两种方案。
这两种方案各有优缺点,经过分析对比,选择了a型方案。这是因为:一、该方案导电部分可有较大宽度,承载能力较高,可使用较粗的焊丝(可用Φ4mm,而方案b只能用Φ3mm),可焊接的坡口深度较大;二、该方案与ESAB公司焊头相同,可以利用ESAB公司其它焊头的某些部件及原有控制线路,便于与原EHD焊机配合。
基于上述第二点同样的理由,接头自动跟踪装置设计为机械传感→光电转换、讯号放大→十字滑板执行的结构。做到了能与原有EHD设备配套使用,达到了在垂直和水平两个方向的自动跟踪。
总之,设计的窄间隙埋弧焊机头主要参照了ESAB公司焊头的结构,但做了以下几方面的改进:
1)焊嘴部分的主体材料采用了既有良好机械性能、耐磨性又有良好的导电性能的铬锆铜而不是采用不锈钢,因而既有足够的强度、刚度,工作过程也较为稳定。
2)导电嘴的摆直接采用气缸驱动而不是气——液转换驱动,因而结构更为简单可靠。
3)导电部分的外表面采用了陶瓷喷涂而不是涂涂料,绝缘性良好且不易剥落。
4)增加了焊嘴垂直度调整机构,可保证焊头在焊接纵缝和环缝两种位置都能与工件保持垂直。
5)缩小了各附助部分的尺寸、减轻了重量,以便于与200X200mm2的小型十字滑板配合使用。
整个焊头由具有可摆导电嘴的焊嘴、自动跟踪装置、送丝机构、焊丝校直机构、摆驱动装置、焊剂撒放及回收装置、支架等部分组成。
⑧ 窄间隙埋弧焊的应用
某核电工程稳定器为核一级设备,属锻焊结构的大型压力容器。整个容器由上下封头、三节筒体五大锻件组焊而成。主体焊缝为四条Φ2m,厚度115mm的环焊缝,要求采用窄间隙埋弧焊接。容器主体材料为法国核容器专用钢种16MND5(相当于A508-Ⅲ)锰镍相低合金钢。
为了焊接该容器,在对16MND5的焊接性进行了充分试验及其它工艺试验的基础上,进行了窄间隙埋弧焊的焊接工艺评定。评定用16MND5锻件尺寸为1500X250X115,两块对接。
与宽坡口埋弧焊相比,由于窄间隙埋弧焊坡口窄、焊材消耗量少、热输入量低、焊接时间短,焊接变形和焊接应力小,降低了开裂倾向,实现了高效率、低成本、高质量焊接。窄间隙埋弧焊的优势主要表现在:窄间隙埋弧焊在焊接时,通常采用I型或U型窄间隙坡口,坡口间隙在18~30mm,与普通埋弧焊接同样厚板须采用U型或者双U型坡口相比,可节省大量填充金属和焊接时间;由于加工金属量减少,焊接效率提高,相比传统埋弧焊,窄间隙埋弧焊能节省焊材约20%~40%,焊接总效率可提高30%~45%,大大的减少了焊接成本;由于采用窄间隙坡口窄间隙埋弧焊在节约焊材的同时又减小焊接应力,焊缝金属中积聚的氧也较少;由于焊接线能量较小,且后续焊道对前焊道有重叠加热作用,因此,焊接接头具有较高的冲击韧性,焊接变形亦得以减少,从而提高焊接质量。