哪些不同金属材料不能一起焊接
A. 不同的材料之间焊接有什么注意的
一、电弧的长度
电弧的长度与焊条涂料种类和药皮厚度有关系。但都应尽可能采取短弧,特别是低氢焊条。电弧长可能造成气孔。短弧可避免大气中的O2、N2等有害气体侵入焊缝金属,形成氧化物等不良杂质而影响焊缝质量。
二、焊接速度
适宜的焊接速度是以焊条直径、涂料类型、焊接电流、被焊接物的热容量、结构开头等条件有其相应变化,不能作出标准的规定。
保持适宜的焊接速度,熔渣能很好的覆盖着熔潭。使熔潭内的各种杂质和气体有充分浮出时间,避免形成焊缝的夹渣和气孔。在焊接时如运棒速度太快,焊接部位冷却时,收缩应力会增大,使焊缝产生裂缝。
(1)哪些不同金属材料不能一起焊接扩展阅读
焊丝的选用:
①根据被焊结构的钢种选择焊丝
对于碳钢及低合金高强钢,主要是按“等强匹配”的原则,选择满足力学性能要求的焊丝。
对于耐热钢和耐候钢,主要是侧重考虑焊缝金属与母材化学成分的一致相似,以满足耐热性和耐腐蚀性等方面的要求。
②根据被焊部件的质量要求选择焊丝
与焊接条件、坡口形状、保护气体混合比等工艺条件有关,要在确保焊接接头性能的前提下,选择达到最大焊接效率及降低焊接成本的焊接材料。
③根据现场焊接位置对应于被焊工件的板厚选择所使用的焊丝直径,确定所使用的电流值,选择适合于焊接位置及使用电流的焊丝牌号。
B. 有什么金属材料焊接不来了!
焊接一般抄指的是铁或者是钢,一般钢的含碳量越少越容易焊接,铁一般不用焊接,这些材料焊接用的是焊条,对于非铁的材料也能焊倒不是用焊条是用钎焊,钎焊又分软钎焊和硬钎焊,电子原件的焊接的焊锡就是软钎焊的一种,还有一些不常用的焊接方法,比如压力焊,摩擦焊,点焊等可用于一些特殊材料的焊接。
C. 焊接金属有哪几种方式
金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类.
熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。
在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。
为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。
压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。
各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。
钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。
D. 不同的焊接方法对应那些材料
手弧焊:钢材,钢结构
埋弧焊:中,厚钢板的直缝,环缝等可设置轨道的缝。
钨极氩弧焊版:不锈钢及有权色金属。
熔化极气体保护焊:与保护气体有关:
a.保护气体(氩):不锈钢及有色金属
b.保护气体(CO2):钢材,钢结构
E. 金属材料有哪些焊接方法
工件可以用各种同类或不同类的金属、非金属材料(塑 料、石墨、回陶瓷、玻璃等),也可以答用一种金属与一种非金属材料。金属的焊接在现代工业中具有广泛的应用,因此狭 义地讲,焊接通常就是指金属材料的焊接。
按照焊接过程中金属材料所处的状态不同,目前把焊接 方法分为以下三类:
(1) 熔焊焊接过程中,将焊件接头加热至熔化状态, 不加压力完成焊接的方法称为熔焊。常用的熔焊方法有电弧焊、气焊、电渣焊等。
(2) 压焊焊接过程中,必须对焊件施加压力(加热或 不加热),以完成焊接的方法称为压焊。常用的压焊方法有电阻焊(对焊、点焊、缝焊)、摩擦焊、旋转电弧焊、超声 波焊等。
(3) 钎焊焊接过程中,采用比母材熔点低的金属材料 作钎料,将焊件和钎料加热到高于钎料熔点、低于母材熔点的温度,利用液态钎料润湿母材,填充接头间隙并与母材相 互扩散实现连接焊件的方法称为钎焊。
常用的钎焊方法有火 焰钎焊、感应钎焊、炉中钎焊、盐浴钎焊和真空钎焊等。
F. 异种金属材料焊接存在哪些问题
1、异种材料的熔点相差越大,越难进行焊接。
这是因为熔点低的材料达到熔化状态时,熔点高的材料仍呈固体状态,这时已经熔化的材料容易渗入过热区的晶界,会造成低熔点材料的流失、合金元素烧损或蒸发,使焊接接头难以焊合。例如焊接铁与铅时(熔点相差很大),不仅两种材料在固态时不能相互溶解,而且在液态时彼此之间也不能相互溶解,液态金属呈层状分布,冷却后各自单独进行结晶。
2、异种材料的线膨胀系数相差越大,越难进行焊接。
线膨胀系数越大的材料,热膨胀率越大,冷却时收缩也越大,熔池结晶时会产生很大的焊接应力。这种焊接应力不易消除,结果会产生很大的焊接变形。由于焊缝两侧材料承受的应力状态不同,容易导致焊缝及热影响区产生裂纹,甚至导致焊缝金属与母材的剥离。
3、异种材料的热导率和比热容相差越大,越难进行焊接。
材料的热导率和比热容会使焊缝金属的结晶条件变坏,晶粒严重粗化,并影响难熔金属的润湿性能。因此,应选用强力热源进行焊接,焊接时热源的位置要偏向导热性能好的母材一侧。
4、异种材料的电磁性相差越大,越难进行焊接。
因为材料的电磁性相差越大,焊接电弧越不稳定,焊缝越差。
5、异种材料之间形成的金属间化合物越多,越难进行焊接。
由于金属间化合物具有较大的脆性,容易导致焊缝产生裂纹、甚至断裂。
6、异种材料焊接过程中,由于焊接区金相组织的变化或新生成的组织,使焊接接头的性能恶化,给焊接带来很大的困难。
接头熔合区和热影响区的力学性能较差,特别是塑韧性的明显下降。由于接头塑韧性的下降以及焊接应力的存在,异种材料焊接接头容易产生裂纹,尤其是焊接热影响区更容易产生裂纹,甚至发生断裂。
7、异种材料的氧化性越强,越难进行焊接。
如用熔焊方法焊接铜和铝时,熔池中极易形成铜和铝的氧化物。冷却结晶时,存在于晶粒边界的氧化物能使晶间结合力降低。
8、异种材料焊接时,焊缝和两种母材金属难以达到等强的要求。
这是由于焊接时熔点低的金属元素容易烧损和蒸发,从而使焊缝的化学成分发生变化,力学性能降低,尤其是焊接异种有色金属时更为显著。
G. 异种金属材料焊接的特点及焊接要点
考虑因素
选用原则
考虑焊件的物理、力学性能和化学成分
1、根据等强度的观点,选择满足母材力学性能的焊条,或结合母材的可焊性,改用非等强度而焊接性好的焊条,但考虑焊缝的结构形式,以满足等强度,等刚度要求。
2、使其合金成分符合或接近母材。
3、母材含C、S、P有害杂质较高时,应选择抗裂性能和抗气孔性能较好的焊条。建议选用氧化钛钙型焊条。如果尚不能解决,可选用低氢钠型焊条。
考虑焊件的工作条件和使用性能
1、在承受动载荷和冲击载荷的情况下,除保证强度外,对冲击韧性、延伸率均有较高要求,应一次选用低氢型、钛钙型和氧化铁型焊条。
2、接触腐蚀介质的,必须根据介质的种类、浓度、工作温度以及区分是一般服饰还是晶间腐蚀等,选用合适的不锈钢焊条。
3、在磨损条件下工作时,应区分是一般还是受冲击磨损,是常温还是高温下磨损。
4、非常温条件下工作时应选用相应的保证低温或高温力学性能的焊条。
考虑焊件的集合形状复杂程度,刚度大小,焊接破口的制备情况和焊接位置
1、形状复杂或大厚度的焊件,焊缝金属在冷却时收缩应力大,容易产生裂纹,必须选用抗裂性能强的焊条,如低氢型焊条,高韧性焊条或氧化铁型焊条。
2、受条件限制不能翻转的焊件,需选用能全位置焊接的焊条。
3、焊接部位难以清理的焊件,选用氧化性强的,对氧化皮和油污不敏感的的算型焊条,以免产生气孔等缺陷。
考虑施焊工地设备
在没有直流焊机的地方,不宜选用限用直流电源的焊条,而应选用交直流电源的焊条。某些钢材(如珠光体耐热钢)需焊后消除热应力,但受设备条件限制(或本身结构限制)不能进行热处理时。应改用非母材金属材料焊条(如奥氏体 不锈钢),可不必焊后热处理。
考虑改善焊接工艺和保护工人的身体健康
在酸性焊条和碱性焊条都可以满足要求的地方,应尽量采用酸性焊条。
考虑劳动生产率和经济合理性
在使用性能相同的情况下,应尽量选用价格较低的酸性焊条,而不用碱性焊条,在酸性焊条中又以钛型、钛钙型为贵,根据我国矿藏资源情况,应大力推广钛铁型药皮的焊条。
H. 哪些方法可以焊接金属材料
金属的焊接,按其工艺过程的特点分有熔焊,压焊和钎焊三大类. 熔焊是在焊接过程中将工件接口加热至熔化状态,不加压力完成焊接的方法。熔焊时,热源将待焊两工件接口处迅速加热熔化,形成熔池。熔池随热源向前移动,冷却后形成连续焊缝而将两工件连接成为一体。 在熔焊过程中,如果大气与高温的熔池直接接触,大气中的氧就会氧化金属和各种合金元素。大气中的氮、水蒸汽等进入熔池,还会在随后冷却过程中在焊缝中形成气孔、夹渣、裂纹等缺陷,恶化焊缝的质量和性能。 为了提高焊接质量,人们研究出了各种保护方法。例如,气体保护电弧焊就是用氩、二氧化碳等气体隔绝大气,以保护焊接时的电弧和熔池率;又如钢材焊接时,在焊条药皮中加入对氧亲和力大的钛铁粉进行脱氧,就可以保护焊条中有益元素锰、硅等免于氧化而进入熔池,冷却后获得优质焊缝。 压焊是在加压条件下,使两工件在固态下实现原子间结合,又称固态焊接。常用的压焊工艺是电阻对焊,当电流通过两工件的连接端时,该处因电阻很大而温度上升,当加热至塑性状态时,在轴向压力作用下连接成为一体。 各种压焊方法的共同特点是在焊接过程中施加压力而不加填充材料。多数压焊方法如扩散焊、高频焊、冷压焊等都没有熔化过程,因而没有象熔焊那样的有益合金元素烧损,和有害元素侵入焊缝的问题,从而简化了焊接过程,也改善了焊接安全卫生条件。同时由于加热温度比熔焊低、加热时间短,因而热影响区小。许多难以用熔化焊焊接的材料,往往可以用压焊焊成与母材同等强度的优质接头。 钎焊是使用比工件熔点低的金属材料作钎料,将工件和钎料加热到高于钎料熔点、低于工件熔点的温度,利用液态钎料润湿工件,填充接口间隙并与工件实现原子间的相互扩散,从而实现焊接的方法。
I. 什么是金属材料的焊接性
就是金属材料可以进行焊接的性能,以及焊接之后焊缝的性能的总称。